Van der Waals density functional study of formic acid adsorption and decomposition on Cu(111)

被引:20
作者
Putra, Septia Eka Marsha [1 ]
Muttaqien, Fahdzi [1 ]
Hamamoto, Yuji [1 ,2 ]
Inagaki, Kouji [1 ,2 ]
Hamada, Ikutaro [1 ,2 ]
Morikawa, Yoshitada [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Dept Precis Sci & Technol, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan
[2] Kyoto Univ, ESICB, Kyoto 6158520, Japan
[3] Osaka Univ, Grad Sch Engn, Res Ctr Ultra Precis Sci & Technol, Suita, Osaka, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
FORMATE; HYDROGEN; SURFACE; DESORPTION; CATALYSTS; KINETICS;
D O I
10.1063/1.5087420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a density functional theory study on the adsorption and decomposition mechanisms of monomeric formic acid (HCOOH) on a Cu(111) surface. We used Perdew-Burke-Ernzerhof (PBE) functional, PBE with dispersion correction (PBE-D2), and van der Waals density functionals (vdW-DFs). We found that the adsorption energy of HCOOH by using the PBE functional is smaller than the experimental value, while the PBE-D2 and vdW-DFs give better agreement with experimental results. The activation energies of decomposition calculated by using PBE-D2 and vdW-DFs are lower compared with desorption energies, seemingly in contradiction with experimental findings at room temperature, in which no decomposition of HCOOH on Cu(111) is observed when the surface is exposed to the gas phase HCOOH. We performed the reaction rate analysis based on the first principles calculations for desorption and decomposition processes to clarify this contradiction. We found that the desorption of monomeric HCOOH is faster than that of its decomposition rate at room temperature because of a much larger pre-exponential factor. Thus, no decomposition of monomeric HCOOH should take place at room temperature. Our analysis revealed the competition between desorption and decomposition processes of HCOOH. (C) 2019 Author(s).
引用
收藏
页数:10
相关论文
共 59 条
[1]  
Atkins P., 2013, ELEMENTS PHYS CHEM
[2]   Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains [J].
Baber, Ashleigh E. ;
Mudiyanselage, Kumudu ;
Senanayake, Sanjaya D. ;
Beatriz-Vidal, Alba ;
Luck, Kyle A. ;
Sykes, E. Charles H. ;
Liu, Ping ;
Rodriguez, Jose A. ;
Stacchiola, Dario J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (29) :12291-12298
[3]   Spectroscopic and kinetic studies of formic acid adsorption on Cu(110) [J].
Bowker, M ;
Haq, S ;
Holroyd, R ;
Parlett, PM ;
Poulston, S ;
Richardson, N .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (23) :4683-4686
[4]   Equilibrium Constants and Rate Constants for Adsorbates: Two-Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal Hindered Translator Models [J].
Campbell, Charles T. ;
Sprowl, Lynza H. ;
Arnadottir, Liney .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (19) :10283-10297
[5]   Kinetic Prefactors of Reactions on Solid Surfaces [J].
Campbell, Charles T. ;
Arnadottir, Liney ;
Sellers, Jason R. V. .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2013, 227 (9-11) :1435-1454
[6]   Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements [J].
Campbell, Charles T. ;
Sellers, Jason R. V. .
CHEMICAL REVIEWS, 2013, 113 (06) :4106-4135
[7]   Adsorption of formate species on Cu(h,k,l) low index surfaces [J].
Chutia, Arunabhiram ;
Silverwood, Ian P. ;
Farrow, Matthew R. ;
Scanlon, David O. ;
Wells, Peter P. ;
Bowker, Michael ;
Parker, Stewart F. ;
Catlow, C. Richard A. .
SURFACE SCIENCE, 2016, 653 :45-54
[8]  
DOLL JJ, 1974, SURF SCI, V44, P449, DOI 10.1016/0039-6028(74)90130-7
[9]   Temperature programmed desorption: A statistical rate theory approach [J].
Elliott, JAW ;
Ward, CA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (13) :5677-5684
[10]   Formic Acid as a Hydrogen Energy Carrier [J].
Eppinger, Jorg ;
Huang, Kuo-Wei .
ACS ENERGY LETTERS, 2017, 2 (01) :188-195