Experimental progress in positronium laser physics

被引:143
作者
Cassidy, David B. [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
关键词
BOSE-EINSTEIN CONDENSATION; ANNIHILATION LIFETIME SPECTROSCOPY; LOW-ENERGY POSITRONS; NONADIABATIC VARIATIONAL CALCULATIONS; OPTICAL FREQUENCY-MEASUREMENT; HYPERFINE-STRUCTURE INTERVAL; SINGLE-QUANTUM ANNIHILATION; EXCITED-STATE POSITRONIUM; AGE-MOMENTUM CORRELATION; OF-FLIGHT SPECTROSCOPY;
D O I
10.1140/epjd/e2018-80721-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The field of experimental positronium physics has advanced significantly in the last few decades, with new areas of research driven by the development of techniques for trapping and manipulating positrons using Surko-type buffer gas traps. Large numbers of positrons (typically >= 10(6)) accumulated in such a device may be ejected all at once, so as to generate an intense pulse. Standard bunching techniques can produce pulses with ns (mm) temporal (spatial) beam profiles. These pulses can be converted into a dilute Ps gas in vacuum with densities on the order of 10(7) cm(-3) which can be probed by standard ns pulsed laser systems. This allows for the efficient production of excited Ps states, including long-lived Rydberg states, which in turn facilitates numerous experimental programs, such as precision optical and microwave spectroscopy of Ps, the application of Stark deceleration methods to guide, decelerate and focus Rydberg Ps beams, and studies of the interactions of such beams with other atomic and molecular species. These methods are also applicable to antihydrogen production and spectroscopic studies of energy levels and resonances in positronium ions and molecules. A summary of recent progress in this area will be given, with the objective of providing an overview of the field as it currently exists, and a brief discussion of some future directions.
引用
收藏
页数:72
相关论文
共 799 条
[1]   Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies [J].
Abbott, D. ;
Adderley, P. ;
Adeyemi, A. ;
Aguilera, P. ;
Ali, M. ;
Areti, H. ;
Baylac, M. ;
Benesch, J. ;
Bosson, G. ;
Cade, B. ;
Camsonne, A. ;
Cardman, L. S. ;
Clark, J. ;
Cole, P. ;
Covert, S. ;
Cuevas, C. ;
Dadoun, O. ;
Dale, D. ;
Dong, H. ;
Dumas, J. ;
Fanchini, E. ;
Forest, T. ;
Forman, E. ;
Freyberger, A. ;
Froidefond, E. ;
Golge, S. ;
Grames, J. ;
Gueye, P. ;
Hansknecht, J. ;
Harrell, P. ;
Hoskins, J. ;
Hyde, C. ;
Josey, B. ;
Kazimi, R. ;
Kim, Y. ;
Machie, D. ;
Mahoney, K. ;
Mammei, R. ;
Marton, M. ;
McCarter, J. ;
McCaughan, M. ;
McHugh, M. ;
McNulty, D. ;
Mesick, K. E. ;
Michaelides, T. ;
Michaels, R. ;
Moffit, B. ;
Moser, D. ;
Camacho, C. Munoz ;
Muraz, J-F .
PHYSICAL REVIEW LETTERS, 2016, 116 (21)
[2]   MEASUREMENT OF E+E- ANNIHILATION AT REST INTO 4 GAMMA-RAYS [J].
ADACHI, S ;
CHIBA, M ;
HIROSE, T ;
NAGAYAMA, S ;
NAKAMITSU, Y ;
SATO, T ;
YAMADA, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (21) :2634-2637
[3]   DOES ANTIMATTER FALL WITH THE SAME ACCELERATION AS ORDINARY MATTER [J].
ADELBERGER, EG ;
HECKEL, BR ;
STUBBS, CW ;
SU, Y .
PHYSICAL REVIEW LETTERS, 1991, 66 (07) :850-853
[4]   Positronium energy levels at order mα7: Product contributions in the two-photon-annihilation channel [J].
Adkins, Gregory S. ;
Tran, Lam M. ;
Wang, Ruihan .
PHYSICAL REVIEW A, 2016, 93 (05)
[5]   Positronium energy levels at order mα7: Light-by-light scattering in the two-photon-annihilation channel [J].
Adkins, Gregory S. ;
Parsons, Christian ;
Salinger, M. D. ;
Wang, Ruihan ;
Fell, Richard N. .
PHYSICAL REVIEW A, 2014, 90 (04)
[6]   Bound-state formalism for positronium [J].
Adkins, GS ;
Fell, RN .
PHYSICAL REVIEW A, 1999, 60 (06) :4461-4475
[7]   Two-loop correction to the orthopositronium decay rate [J].
Adkins, GS ;
Fell, RN ;
Sapirstein, J .
ANNALS OF PHYSICS, 2002, 295 (02) :136-193
[8]   Laser excitation of the n=3 level of positronium for antihydrogen production [J].
Aghion, S. ;
Amsler, C. ;
Ariga, A. ;
Ariga, T. ;
Bonomi, G. ;
Braunig, P. ;
Bremer, J. ;
Brusa, R. S. ;
Cabaret, L. ;
Caccia, M. ;
Caravita, R. ;
Castelli, F. ;
Cerchiari, G. ;
Chlouba, K. ;
Cialdi, S. ;
Comparat, D. ;
Consolati, G. ;
Demetrio, A. ;
Di Noto, L. ;
Doser, M. ;
Dudarev, A. ;
Ereditato, A. ;
Evans, C. ;
Ferragut, R. ;
Fesel, J. ;
Fontana, A. ;
Forslund, O. K. ;
Gerber, S. ;
Giammarchi, M. ;
Gligorova, A. ;
Gninenko, S. ;
Guatieri, F. ;
Haider, S. ;
Holmestad, H. ;
Huse, T. ;
Jernelv, I. L. ;
Jordan, E. ;
Kellerbauer, A. ;
Kimura, M. ;
Koettig, T. ;
Krasnicky, D. ;
Lagomarsino, V. ;
Lansonneur, P. ;
Lebrun, P. ;
Lehner, S. ;
Liberadzka, J. ;
Malbrunot, C. ;
Mariazzi, S. ;
Marx, L. ;
Matveev, V. .
PHYSICAL REVIEW A, 2016, 94 (01)
[9]   Observation of the 1S-2S transition in trapped antihydrogen [J].
Ahmadi, M. ;
Alves, B. X. R. ;
Baker, C. J. ;
Bertsche, W. ;
Butler, E. ;
Capra, A. ;
Carruth, C. ;
Cesar, C. L. ;
Charlton, M. ;
Cohen, S. ;
Collister, R. ;
Eriksson, S. ;
Evans, A. ;
Evetts, N. ;
Fajans, J. ;
Friesen, T. ;
Fujiwara, M. C. ;
Gill, D. R. ;
Gutierrez, A. ;
Hangst, J. S. ;
Hardy, W. N. ;
Hayden, M. E. ;
Isaac, C. A. ;
Ishida, A. ;
Johnson, M. A. ;
Jones, S. A. ;
Jonsell, S. ;
Kurchaninov, L. ;
Madsen, N. ;
Mathers, M. ;
Maxwell, D. ;
McKenna, J. T. K. ;
Menary, S. ;
Michan, J. M. ;
Momose, T. ;
Munich, J. J. ;
Nolan, P. ;
Olchanski, K. ;
Olin, A. ;
Pusa, P. ;
Rasmussen, C. O. ;
Robicheaux, F. ;
Sacramento, R. L. ;
Sameed, M. ;
Sarid, E. ;
Silveira, D. M. ;
Stracka, S. ;
Stutter, G. ;
So, C. ;
Tharp, T. D. .
NATURE, 2017, 541 (7638) :506-512
[10]  
ALEKSEEV AI, 1958, SOV PHYS JETP-USSR, V7, P826