OOF3D: An image-based finite element solver for materials science

被引:15
作者
Coffman, Valerie R. [1 ,2 ]
Reid, Andrew C. E. [1 ,3 ]
Langer, Stephen A. [1 ,2 ]
Dogan, Gunay [1 ,2 ,4 ]
机构
[1] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA
[3] Comp Integrat & Programming Solut, Bethesda, MD 20814 USA
[4] Theiss Res, La Jolla, CA 92037 USA
关键词
Meshing; Mesh refinement; Microstructures; Finite element modeling; Shape quality; Homogeneity; MATERIAL MICROSTRUCTURES; ELASTIC PROPERTIES; CRACK-GROWTH; PARAMETERS; FRACTURE; SOLIDS;
D O I
10.1016/j.matcom.2012.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent advances in experimental techniques (micro-CT scans, automated serial sectioning, electron back-scatter diffraction, and synchrotron radiation X-rays) have made it possible to characterize the full, three-dimensional structure of real materials. Such new experimental techniques have created a need for software tools that can model the response of these materials under various kinds of loads. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes of complex geometries, solving PDE's using finite element models, and visualizing 3D results. We discuss the challenges involved in implementing OOF in 3D and create a finite element mesh of trabecular bone as an illustrative example. Published by Elsevier B.V. on behalf of IMACS.
引用
收藏
页码:2951 / 2961
页数:11
相关论文
共 28 条
[1]  
Baruffaldi F., 2009, XRAY MICROCT SCANS H
[2]  
BILDERBACK DH, 2006, SYNCHROTRON RAD NEWS, V19, P30, DOI DOI 10.1080/08940880601064992
[3]   Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis [J].
Borah, B ;
Gross, GJ ;
Dufresne, TE ;
Smith, TS ;
Cockman, MD ;
Chmielewski, PA ;
Lundy, MW ;
Hartke, JR ;
Sod, EW .
ANATOMICAL RECORD, 2001, 265 (02) :101-110
[4]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[5]   Investigation of the mechanical properties of Mo-reinforced glass-matrix composites [J].
Cannillo, V ;
Manfredini, T ;
Montorsi, M ;
Boccaccini, AR .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 344 (1-2) :88-93
[6]   Challenges in Continuum Modelling of Intergranular Fracture [J].
Coffman, V. R. ;
Sethna, J. P. ;
Ingraffea, A. R. ;
Bozek, J. E. ;
Bailey, N. P. ;
Barker, E. I. .
STRAIN, 2011, 47 :99-104
[7]  
Coffman V.R., ELEMENT HOMOGE UNPUB
[8]   Energy recovery LINAC: A next generation source for inelastic X-ray scattering [J].
Finkelstein, KD ;
Bazarov, IV ;
Liepe, A ;
Shen, Q ;
Bilderback, D ;
Gruner, S ;
Kazimirov, A .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (12) :2310-2312
[9]  
Garboczi EJ, 1999, EXPTL METH PHYS SCI, V35, P1
[10]  
Garcia R.E., 2004, CONTINUUM SCALE SIMU