Algorithms for Zumkeller Labeling of Full Binary Trees and Square Grids

被引:5
作者
Balamurugan, B. J. [1 ]
Thirusangu, K. [2 ]
Thomas, D. G. [3 ]
机构
[1] Agni Coll Technol Thalambur, Dept Math, Madras 600130, Tamil Nadu, India
[2] SIVET Coll Gowrivakkam, Dept Math, Madras 600073, Tamil Nadu, India
[3] Madras Christian Coll Tambaram, Dept Math, Madras 600059, Tamil Nadu, India
来源
ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 2 | 2015年 / 325卷
关键词
Zumkeller labeling; Number theory; Code-making; Breaking;
D O I
10.1007/978-81-322-2135-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let G = (V, E) be a graph. An injective function f: V -> N is said to be a Zumkeller labeling of the graph G, if the induced function f*: E -> N defined as f*(xy) = f(x) f(y) is a Zumkeller number for all xy is an element of E, x, y is an element of V. A graph G = (V, E) which admits a Zumkeller labeling is called a Zumkeller graph. In this paper, we provide algorithms for Zumkeller labeling of full binary trees and grid graphs.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 9 条
[1]  
Balamurugan B.J., 2013, INT C INF MATH SCI, P349
[2]  
Bloom G.S., 1977, IEEE, V165, P526
[3]  
Buss F., ZUMKELLER NUMBERS PA
[4]  
Gallian J. A., 2013, ELECT J COMB, V16
[5]  
Harary F., 1972, Graph Theory
[6]  
JOHNSONBAUGH R, 2001, DISCRETE MATH
[7]   On Zumkeller numbers [J].
Peng, Yuejian ;
Rao, K. P. S. Bhaskara .
JOURNAL OF NUMBER THEORY, 2013, 133 (04) :1135-1155
[8]  
Rosa A., 1966, THEORY GRAPHS, P349
[9]  
Srinivasan A. K., 1948, CURRENT SCI, V17, P179