Computational Modeling of the Regulatory Network Organizing the Wound Response in Arabidopsis thaliana

被引:0
作者
Kim, Jan T.
Camargo, Anyela [2 ]
Devoto, Alessandra [3 ]
Moulton, Vincent
Turner, John [1 ]
机构
[1] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
[2] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Dyfed, Wales
[3] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England
基金
英国生物技术与生命科学研究理事会;
关键词
Gene regulatory network; biological signaling; computer modeling; Arabidopsis thaliana; wound response; PARAMETER-ESTIMATION; MICROARRAY DATA; EXPRESSION DATA; DYNAMICS; SYSTEMS; RECONSTRUCTION; MORPHOGENESIS; EVOLUTION; PATHWAYS; DESIGN;
D O I
10.1162/ARTL_a_00076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plants are frequently wounded by mechanical impact or by insects, and their ability to adequately respond to wounding is essential for their survival and reproductive success. The wound response is mediated by a signal transduction and regulatory network. Molecular studies in Arabidopsis have identified the COI1 gene as a central component of this network. Current models of these networks qualitatively describe the wound response, but they are not directly assessed using quantitative gene expression data. We built a model comprising the key components of the Arabidopsis wound response using the transsys framework. For comparison, we constructed a null model that is devoid of any regulatory interactions, and various alternative models by rewiring the wound response model. All models were parametrized by computational optimization to generate synthetic gene expression profiles that approximate the empirical data set. We scored the fit of the synthetic to the empirical data with various distance measures, and used the median distance after optimization to directly and quantitatively assess the wound response model and its alternatives. Discrimination of candidate models depends substantially on the measure of gene expression profile distance. Using the null model to assess quality of the distance measures for discrimination, we identify correlation of log-ratio profiles as the most suitable distance. Our wound response model fits the empirical data significantly better than the alternative models. Gradual perturbation of the wound response model results in a corresponding gradual decline in fit. The optimization approach provides insights into biologically relevant features, such as robustness. It is a step toward enabling integrative studies of multiple cross-talking pathways, and thus may help to develop our understanding how the genome informs the mapping of environmental signals to phenotypic traits.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 49 条
[41]   Building and analysing genome-wide gene disruption networks [J].
Rung, J ;
Schlitt, T ;
Brazma, A ;
Freivalds, K ;
Vilo, J .
BIOINFORMATICS, 2002, 18 :S202-S210
[42]   Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor [J].
Sheard, Laura B. ;
Tan, Xu ;
Mao, Haibin ;
Withers, John ;
Ben-Nissan, Gili ;
Hinds, Thomas R. ;
Kobayashi, Yuichi ;
Hsu, Fong-Fu ;
Sharon, Michal ;
Browse, John ;
He, Sheng Yang ;
Rizo, Josep ;
Howe, Gregg A. ;
Zheng, Ning .
NATURE, 2010, 468 (7322) :400-U301
[43]   The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements [J].
Shi, Leming ;
Reid, Laura H. ;
Jones, Wendell D. ;
Shippy, Richard ;
Warrington, Janet A. ;
Baker, Shawn C. ;
Collins, Patrick J. ;
de Longueville, Francoise ;
Kawasaki, Ernest S. ;
Lee, Kathleen Y. ;
Luo, Yuling ;
Sun, Yongming Andrew ;
Willey, James C. ;
Setterquist, Robert A. ;
Fischer, Gavin M. ;
Tong, Weida ;
Dragan, Yvonne P. ;
Dix, David J. ;
Frueh, Felix W. ;
Goodsaid, Federico M. ;
Herman, Damir ;
Jensen, Roderick V. ;
Johnson, Charles D. ;
Lobenhofer, Edward K. ;
Puri, Raj K. ;
Scherf, Uwe ;
Thierry-Mieg, Jean ;
Wang, Charles ;
Wilson, Mike ;
Wolber, Paul K. ;
Zhang, Lu ;
Amur, Shashi ;
Bao, Wenjun ;
Barbacioru, Catalin C. ;
Lucas, Anne Bergstrom ;
Bertholet, Vincent ;
Boysen, Cecilie ;
Bromley, Bud ;
Brown, Donna ;
Brunner, Alan ;
Canales, Roger ;
Cao, Xiaoxi Megan ;
Cebula, Thomas A. ;
Chen, James J. ;
Cheng, Jing ;
Chu, Tzu-Ming ;
Chudin, Eugene ;
Corson, John ;
Corton, J. Christopher ;
Croner, Lisa J. .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1151-1161
[44]   Critical nodes in signalling pathways: insights into insulin action [J].
Taniguchi, CM ;
Emanuelli, B ;
Kahn, CR .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (02) :85-96
[45]   Parameter reconstruction for biochemical networks using interval analysis [J].
Department of Mathematics, Uppsala University, Box 480, Uppsala, Sweden ;
不详 .
Reliab Comput, 2006, 5 (389-402) :389-402
[46]   SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms [J].
Van den Bulcke, T ;
Van Leemput, K ;
Naudts, B ;
van Remortel, P ;
Ma, HW ;
Verschoren, A ;
De Moor, B ;
Marchal, K .
BMC BIOINFORMATICS, 2006, 7 (1)
[47]  
Van Rossum G., 2002, Python Reference Manual
[48]   The segment polarity network is a robust developmental module [J].
von Dassow, G ;
Meir, E ;
Munro, EM ;
Odell, GM .
NATURE, 2000, 406 (6792) :188-192
[49]   Evolution of digital organisms at high mutation rates leads to survival of the flattest [J].
Wilke, CO ;
Wang, JL ;
Ofria, C ;
Lenski, RE ;
Adami, C .
NATURE, 2001, 412 (6844) :331-333