Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates

被引:56
作者
Enatsu, Yoichi [1 ]
Nakata, Yukihiko [2 ]
Muroya, Yoshiaki [3 ]
Izzo, Giuseppe [4 ]
Vecchio, Antonia [5 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Basque Ctr Appl Math, E-48160 Derio, Spain
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
[4] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[5] CNR, Ist Applicaz Calcolo M Picone, I-80131 Naples, Italy
基金
日本学术振兴会;
关键词
difference equation; global asymptotic stability; SIR epidemic model; basic reproduction number; backward Euler method; STABILITY; TRANSMISSION; DISEASE; PERMANENCE;
D O I
10.1080/10236198.2011.555405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by applying a variation of the backward Euler method, we propose a discrete-time SIR epidemic model whose discretization scheme preserves the global asymptotic stability of equilibria for a class of corresponding continuous-time SIR epidemic models. Using discrete-time analogue of Lyapunov functionals, the global asymptotic stability of the equilibria is fully determined by the basic reproduction number R-0, when the infection incidence rate has a suitable monotone property.
引用
收藏
页码:1163 / 1181
页数:19
相关论文
共 29 条
[1]   Convergence results in SIR epidemic models with varying population sizes [J].
Beretta, E ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1909-1921
[2]   Models for transmission of disease with immigration of infectives [J].
Brauer, F ;
van den Driessche, P .
MATHEMATICAL BIOSCIENCES, 2001, 171 (02) :143-154
[3]  
BROWN GC, 1995, J INVERTEBR PATHOL, V65, P10, DOI 10.1006/jipa.1995.1002
[4]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[5]  
Cooke K.L., 1979, The Rocky Mountain Journal of Mathematics, V9, P31, DOI [DOI 10.1216/RMJ-1979-9-1-31, 10.1216/RMJ-1979-9-1-31]
[6]   Suppression of numerically induced chaos with nonstandard finite difference schemes [J].
de Markus, AS ;
Mickens, RE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (02) :317-324
[7]   GLOBAL STABILITY OF SIR EPIDEMIC MODELS WITH A WIDE CLASS OF NONLINEAR INCIDENCE RATES AND DISTRIBUTED DELAYS [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01) :61-74
[8]   GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) :347-361
[9]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[10]   Global analysis on delay epidemiological dynamic models with nonlinear incidence [J].
Huang, Gang ;
Takeuchi, Yasuhiro .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :125-139