Expression of NADPH oxidases and enhanced H2O2-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-α

被引:61
作者
Yoshida, Lucia S. [1 ]
Tsunawaki, Shohko [1 ]
机构
[1] Natl Res Inst Child Hlth & Dev, Dept Infect Dis, Tokyo 1578535, Japan
关键词
Nox4; Nox2; NADPH oxidase; hydrogen peroxide; human coronary artery endothelial cells; tumor necrosis factor-alpha;
D O I
10.1016/j.intimp.2008.05.004
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Tumor necrosis factor (TNF)-alpha, which potentiates reactive oxygen species (ROS) generation, is crucial for the development of coronary arteritis and aneurysm in Kawasaki disease. We hypothesized that vascular NADPH oxidase (Nox) enzymes participate in the TNF-alpha-triggered endothelial damage through elevating ROS generation. Thus, we herein examine the expression of Nox enzymes in human coronary artery endothelial cells (HCAEC) and the effects of TNF-alpha on Nox-mediated ROS generation. We show that HCAEC in culture spontaneously generate H2O2 at basal level (0.53 nmol/min/mg protein). In searching for Nox components responsible for the H2O2 generation, two distinct isoforms of Nox4 are found expressed in HCAEC: the prototype Nox4A and the shorter Nox4B, respectively in the postnuctear supernatant and the nuclear fractions. Other expressed Nox family components are: as mRNAs, Nox4C, Nox4D, Nox1, p51(nox), and Racs; as mRNAs and proteins, Nox2, p22(phox), p47(phox), and p67(phox). The H2O2-generating activity increases up to three-fold upon inclusion of TNF-alpha in culture, concomitantly with augmented expressions of Nox4A, p22(phox), p47(phox) and p67(phox) proteins. Together, these results suggest that Nox2 and Nox4A enzymes are induced by TNF-alpha endowing HCAEC with enhanced ROS-generating activity, which may play a rote in the initial endothelial dysfunction through oxidative stress. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1377 / 1385
页数:9
相关论文
共 43 条
[1]   NAD(P)H oxidases in rat basilar arterial endothelial cells [J].
Ago, T ;
Kitazono, T ;
Kuroda, J ;
Kumai, Y ;
Kamouchi, M ;
Ooboshi, H ;
Wakisaka, M ;
Kawahara, T ;
Rokutan, K ;
Ibayashi, S ;
Iida, M .
STROKE, 2005, 36 (05) :1040-1046
[2]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[3]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[4]   NOX3, a superoxide-generating NADPH oxidase of the inner ear [J].
Bánfi, B ;
Malgrange, B ;
Knisz, J ;
Steger, K ;
Dubois-Dauphin, M ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :46065-46072
[5]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[6]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[7]   Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale [J].
Beyer, A ;
Hollunder, J ;
Nasheuer, HP ;
Wilhelm, T .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (11) :1083-1092
[8]   The vascular NAD(P)H oxidases as therapeutic targets cardiovascular diseases [J].
Cai, H ;
Griendling, KK ;
Harrison, DG .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2003, 24 (09) :471-478
[9]   Alternative mRNA splice forins of NOXO1:: Differential tissue expression and regulation of Nox1 and Nox3 [J].
Cheng, GJ ;
Lambeth, JD .
GENE, 2005, 356 :118-126
[10]   Homologs of gp91phox:: cloning and tissue expression of Nox3, Nox4, and Nox5 [J].
Cheng, GJ ;
Cao, ZH ;
Xu, XX ;
Van Meir, EG ;
Lambeth, JD .
GENE, 2001, 269 (1-2) :131-140