Existence of solutions for singular critical growth semilinear elliptic equations

被引:279
作者
Ferrero, A [1 ]
Gazzola, F [1 ]
机构
[1] Dipartimento Sci & TA, I-15100 Alessandria, Italy
关键词
critical growth; critical and nonresonant dimensions; singular elliptic problems;
D O I
10.1006/jdeq.2000.3999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semilinear elliptic problem containing both a singularity and a critical growth term is considered in a bounded domain of R-n: existence results are obtained by variational methods. The solvability of the problem depends on the space dimension n and on the coefficient of the singularity the results obtained describe the behavior of critical dimensions and nonresonant dimensions when the Brezis-Nirenberg problem is modified with a singular term. (C) 2001 Academic Press.
引用
收藏
页码:494 / 522
页数:29
相关论文
共 28 条
[1]  
Almgren F. J., 1989, J. Amer. Math. Soc., V2, P683, DOI [10.1090/S0894-0347-1989-1002633-4, DOI 10.1090/S0894-0347-1989-1002633-4]
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   A NOTE ON THE PROBLEM -DELTA-U=+U/U/2-STAR-2 [J].
AMBROSETTI, A ;
STRUWE, M .
MANUSCRIPTA MATHEMATICA, 1986, 54 (04) :373-379
[4]  
Arioli G., 1998, Differential Integral Equations, V11, P311
[5]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[6]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[9]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[10]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341