Stability of the equilibria for periodic Stokesian Hele-Shaw flows

被引:2
作者
Escher, Joachim [1 ]
Matioc, Bogdan-Vasile [1 ]
机构
[1] Leibniz Univ Hannover, Inst Appl Math, Hannover, Germany
关键词
steady state; nonlinear parabolic equation; non-Newtonian fluid; Hele-Shaw flow;
D O I
10.1007/s00028-008-0381-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the 2-dimensional flow of a Stokesian fluid in a Hele-Shaw cell. The motion of the flow is modelled by a modified Darcy's law. The existence of local solutions has been proved by the authors in a recent work, cf. [4]. The purpose of this paper is to identify the steady states of this flow and to study their stability. The equilibria will be identified as solutions of elliptic free boundary problems. It is shown that if the pressure on the bottom is constant then the corresponding steady state is asymptotically stable.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
[41]   Hele-Shaw flow in thin threads: A rigorous limit result [J].
Matioc, Bogdan-Vasile ;
Prokert, Georg .
INTERFACES AND FREE BOUNDARIES, 2012, 14 (02) :205-230
[42]   MODELING AN ELASTIC FINGERING INSTABILITY IN A REACTIVE HELE-SHAW FLOW [J].
He, Andong ;
Lowengrub, John ;
Belmonte, Andrew .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (03) :842-856
[43]   A Modified Formulation of the Problem of the Steady Finger in a Hele-Shaw Cell [J].
Alimov, M. M. .
UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (03) :462-476
[44]   Contracting bubbles in Hele-Shaw cells with a power-law fluid [J].
McCue, Scott W. ;
King, John R. .
NONLINEARITY, 2011, 24 (02) :613-641
[45]   Boiling Under Hele-Shaw Flow Conditions: The Occurrence of Viscous Fingering [J].
Reinker, Felix ;
Kapitz, Marek ;
Wiesche, Stefan Aus Der .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2016, 138 (02)
[46]   Viscous fingering and heat transfer during boiling in a Hele-Shaw cell [J].
Kapitz, Marek ;
Reinker, Felix ;
Wiesche, Stefan Aus Der .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2015, 67 :18-23
[47]   Simulating the Hele-Shaw flow in the presence of various obstacles and moving particles [J].
D. Peck ;
S. V. Rogosin ;
M. Wrobel ;
G. Mishuris .
Meccanica, 2016, 51 :1041-1055
[48]   Simulating the Hele-Shaw flow in the presence of various obstacles and moving particles [J].
Peck, D. ;
Rogosin, S. V. ;
Wrobel, M. ;
Mishuris, G. .
MECCANICA, 2016, 51 (05) :1041-1055
[49]   A COMPUTATIONAL METHOD FOR MULTIPLE STEADY HELE-SHAW BUBBLES IN PLANAR DOMAINS [J].
Nasser, Mohamed M. S. ;
Green, Christopher C. ;
Kalmoun, El Mostafa .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2025, 63 :150-170
[50]   L1-Theory for Hele-Shaw flow with linear drift [J].
Igbida, Noureddine .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (07) :1545-1576