Sequence-specific prediction of the efficiencies of adenine and cytosine base editors

被引:84
作者
Song, Myungjae [1 ,2 ]
Kim, Hui Kwon [1 ,2 ,3 ,4 ]
Lee, Sungtae [1 ]
Kim, Younggwang [1 ,2 ]
Seo, Sang-Yeon [1 ,2 ]
Park, Jinman [1 ,2 ]
Choi, Jae Woo [1 ]
Jang, Hyewon [1 ,2 ]
Shin, Jeong Hong [1 ,2 ]
Min, Seonwoo [5 ]
Quan, Zhejiu [6 ]
Kim, Ji Hun [6 ]
Kang, Hoon Chul [6 ]
Yoon, Sungroh [5 ,7 ]
Kim, Hyongbum Henry [1 ,2 ,3 ,4 ,8 ]
机构
[1] Yonsei Univ, Coll Med, Dept Pharmacol, Seoul, South Korea
[2] Yonsei Univ, Coll Med, Brain Korea 21 Plus Project Med Sci, Seoul, South Korea
[3] Inst for Basic Sci Korea, Ctr Nanomed, Seoul, South Korea
[4] Yonsei Univ, Adv Sci Inst, Grad Program Nano Biomed Engn, Seoul, South Korea
[5] Seoul Natl Univ, Elect & Comp Engn, Seoul, South Korea
[6] Yonsei Univ, Severance Childrens Hosp, Dept Pediat, Div Pediat Neurol,Coll Med, Seoul, South Korea
[7] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[8] Yonsei Univ, Coll Med, Severance Biomed Sci Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
GENOMIC DNA; OFF-TARGET; CRISPR-CAS9; GRADIENT; DESIGN; SGRNAS;
D O I
10.1038/s41587-020-0573-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The activity of adenine or cytosine base editors at specific target nucleotides is predicted computationally. Base editors, including adenine base editors (ABEs)(1)and cytosine base editors (CBEs)(2,3), are widely used to induce point mutations. However, determining whether a specific nucleotide in its genomic context can be edited requires time-consuming experiments. Furthermore, when the editable window contains multiple target nucleotides, various genotypic products can be generated. To develop computational tools to predict base-editing efficiency and outcome product frequencies, we first evaluated the efficiencies of an ABE and a CBE and the outcome product frequencies at 13,504 and 14,157 target sequences, respectively, in human cells. We found that there were only modest asymmetric correlations between the activities of the base editors and Cas9 at the same targets. Using deep-learning-based computational modeling, we built tools to predict the efficiencies and outcome frequencies of ABE- and CBE-directed editing at any target sequence, with Pearson correlations ranging from 0.50 to 0.95. These tools and results will facilitate modeling and therapeutic correction of genetic diseases by base editing.
引用
收藏
页码:1037 / +
页数:12
相关论文
共 51 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]   Predicting the mutations generated by repair of Cas9-induced double-strand breaks [J].
Allen, Felicity ;
Crepaldi, Luca ;
Alsinet, Clara ;
Strong, Alexander J. ;
Kleshchevnikov, Vitalii ;
De Angeli, Pietro ;
Palenikova, Petra ;
Khodak, Anton ;
Kiselev, Vladimir ;
Kosicki, Michael ;
Bassett, Andrew R. ;
Harding, Heather ;
Galanty, Yaron ;
Munoz-Martinez, Francisco ;
Metzakopian, Emmanouil ;
Jackson, Stephen P. ;
Parts, Leopold .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :64-+
[3]   Microhomology-based choice of Cas9 nuclease target sites [J].
Bae, Sangsu ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Kim, Jin-Soo .
NATURE METHODS, 2014, 11 (07) :705-706
[4]  
Caruana R, 2001, ADV NEUR IN, V13, P402
[5]   Target-Specific Precision of CRISPR-Mediated Genome Editing [J].
Chakrabarti, Anob M. ;
Henser-Brownhill, Tristan ;
Monserrat, Josep ;
Poetsch, Anna R. ;
Luscombe, Nicholas M. ;
Scaffidi, Paola .
MOLECULAR CELL, 2019, 73 (04) :699-+
[6]   sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity [J].
Chari, Raj ;
Yeo, Nan Cher ;
Chavez, Alejandro ;
Church, George M. .
ACS SYNTHETIC BIOLOGY, 2017, 6 (05) :902-904
[7]  
Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
[8]   DeepCRISPR: optimized CRISPR guide RNA design by deep learning [J].
Chuai, Guohui ;
Ma, Hanhui ;
Yan, Jifang ;
Chen, Ming ;
Hong, Nanfang ;
Xue, Dongyu ;
Zhou, Chi ;
Zhu, Chenyu ;
Chen, Ke ;
Duan, Bin ;
Gu, Feng ;
Qu, Sheng ;
Huang, Deshuang ;
Wei, Jia ;
Liu, Qi .
GENOME BIOLOGY, 2018, 19
[9]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[10]   Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation [J].
Doench, John G. ;
Hartenian, Ella ;
Graham, Daniel B. ;
Tothova, Zuzana ;
Hegde, Mudra ;
Smith, Ian ;
Sullender, Meagan ;
Ebert, Benjamin L. ;
Xavier, Ramnik J. ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1262-U130