Speed limits for quantum gates in multiqubit systems

被引:76
作者
Ashhab, S. [1 ,2 ]
de Groot, P. C. [3 ]
Nori, Franco [1 ,2 ]
机构
[1] RIKEN, Adv Sci Inst, Wako, Saitama 3510198, Japan
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 05期
关键词
Quantum electronics - Spin waves - Quantum computers - Logic gates - Quantum optics;
D O I
10.1103/PhysRevA.85.052327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits. We find in particular that simple methods for implementing two-qubit gates generally provide the fastest possible implementations of these gates. We also find that the three-qubit Toffoli gate time varies greatly depending on the type of interactions and the system's geometry, taking only slightly longer than a two-qubit controlled-NOT (CNOT) gate for a triangle geometry. The speed limit for quantum-state transfer across a qubit chain is set by the maximum spin-wave speed in the chain.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 1945, J. Phys. USSR, DOI DOI 10.1007/978-3-642-74626-0_8
[2]   Interqubit coupling mediated by a high-excitation-energy quantum object [J].
Ashhab, S. ;
Niskanen, A. O. ;
Harrabi, K. ;
Nakamura, Y. ;
Picot, T. ;
de Groot, P. C. ;
Harmans, C. J. P. M. ;
Mooij, J. E. ;
Nori, Franco .
PHYSICAL REVIEW B, 2008, 77 (01)
[3]   Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk [J].
Ashhab, S. ;
Nori, Franco .
PHYSICAL REVIEW B, 2007, 76 (13)
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]   Parametric coupling for superconducting qubits [J].
Bertet, P ;
Harmans, CJPM ;
Mooij, JE .
PHYSICAL REVIEW B, 2006, 73 (06)
[6]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[7]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Natural and artificial atoms for quantum computation [J].
Buluta, Iulia ;
Ashhab, Sahel ;
Nori, Franco .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (10)
[9]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[10]   Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain [J].
Carlini, Alberto ;
Hosoya, Akio ;
Koike, Tatsuhiko ;
Okudaira, Yosuke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)