GENERALIZED SEMIFLOWS AND CHAOS IN MULTIVALUED DYNAMICAL SYSTEMS

被引:1
作者
Beran, Zdenek [1 ]
Celikovsy, Sergej [1 ]
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, Vvi, CR-18208 Prague 8, Czech Republic
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2012年 / 26卷 / 25期
关键词
Multivalued dynamical systems; chaos; differential inclusions; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; MELNIKOV METHOD; BIFURCATION;
D O I
10.1142/S0217979212460162
中图分类号
O59 [应用物理学];
学科分类号
摘要
This contribution addresses a possible description of the chaotic behavior in multivalued dynamical systems. For the multivalued system formulated via differential inclusion the practical conditions on the right-hand side are derived to guarantee existence of a solution, which leads to the chaotic behavior. Our approach uses the notion of the generalized semiflow but it does not require construction of a selector on the set of solutions. Several applications are provided by concrete examples of multivalued dynamical systems including the one having a clear physical motivation.
引用
收藏
页数:11
相关论文
共 33 条
[11]  
[Anonymous], GRUNDL MATH WISS
[12]  
[Anonymous], 1988, Differential Equations with Discontinuous Righthand Sides
[13]  
[Anonymous], 2003, WORLD SCI SERIES N A
[14]   On continuous approximation of discontinuous systems [J].
Awrejcewicz, J ;
Feckan, M ;
Olejnik, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (07) :1317-1331
[15]   Analytical prediction of stick-slip chaos in a double self-excited Duffing-type oscillator [J].
Awrejcewicz, Jan ;
Holicke, Mariusz .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006
[16]   Homoclinic trajectories in discontinuous systems [J].
Battelli, Flaviano ;
Feckan, Michal .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (02) :337-376
[17]  
Beran Z, 2009, KYBERNETIKA, V45, P701
[18]   Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Michael, J. ;
Thompson, T. ;
Grebogi, Celso .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :635-652
[19]  
Collins P., 2008, NONLINEAR DYNAMICS S, V8, P169
[20]   Melnikov method for homoclinic bifurcation in nonlinear impact oscillators [J].
Du, ZD ;
Zhang, WN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) :445-458