Measurement-device-independent quantum secure direct communication

被引:190
作者
Zhou, ZengRong [1 ,2 ,3 ,4 ]
Sheng, YuBo [5 ,6 ,7 ]
Niu, PengHao [1 ,2 ,3 ,4 ]
Yin, LiuGuo [8 ,9 ]
Long, GuiLu [1 ,2 ,8 ,9 ]
Hanzo, Lajos [10 ]
机构
[1] State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[4] Beijing Acad Quantum Informat, Beijing 100084, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[6] Nanjing Univ Posts & Telecommun, Coll Telecommun Informat Engn, Nanjing 210003, Peoples R China
[7] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Networ, Minist Educ, Nanjing 210003, Peoples R China
[8] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[9] Tsinghua Univ, Sch Informat & Technol, Beijing 100084, Peoples R China
[10] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金; 欧洲研究理事会;
关键词
quantum information; secure communication; quantum communication;
D O I
10.1007/s11433-019-1450-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secure direct communication (QSDC) is a unique technique, which supports the secure transmission of confidential information directly through a quantum channel without the need for a secret key and for ciphertext. Hence this secure communication protocol fundamentally differs from its conventional counterparts. In this article, we report the first measurement-device-independent (MDI) QSDC protocol relying on sequences of entangled photon pairs and single photons. Explicitly, it eliminates the security loopholes associated with the measurement device. Additionally, this MDI technique is capable of doubling the communication distance of its conventional counterpart operating without using our MDI technique. We also conceive a protocol associated with linear optical Bell-basis measurements, where only two of the four Bell-basis states could be measured. When the number of qubits in a sequence reduces to 1, the MDI-QSDC protocol degenerates to a deterministic MDI quantum key distribution protocol.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP SY
[2]   Controlled order rearrangement encryption for quantum key distribution [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2003, 68 (04) :4
[3]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1
[4]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[5]   Phase-remapping attack in practical quantum-key-distribution systems [J].
Fung, Chi-Hang Fred ;
Qi, Bing ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 75 (03)
[6]   Long-distance measurement-device-independent quantum secure direct communication [J].
Gao, Zikai ;
Li, Tao ;
Li, Zhenhua .
EPL, 2019, 125 (04)
[7]   Experimental quantum secure direct communication with single photons [J].
Hu, Jian-Yong ;
Yu, Bo ;
Jing, Ming-Yong ;
Xiao, Lian-Tuan ;
Jia, Suo-Tang ;
Qin, Guo-Qing ;
Long, Gui-Lu .
LIGHT-SCIENCE & APPLICATIONS, 2016, 5 :e16144-e16144
[8]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014
[9]   The Security Analysis of Two-Step Quantum Direct Communication Protocol in Collective-Rotation Noise Channel [J].
Li Jian ;
Sun Feng-Qi ;
Pan Ze-Shi ;
Nie Jin-Rui ;
Chen Yan-Hua ;
Yuan Kai-Guo .
CHINESE PHYSICS LETTERS, 2015, 32 (08)
[10]   Decoy state quantum key distribution [J].
Lo, HK ;
Ma, XF ;
Chen, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)