Numerical blow-up for a nonlinear heat equation

被引:9
作者
N'Gohisse, Firmin K. [1 ]
Boni, Theodore K. [2 ]
机构
[1] Univ Abobo Adjame, UFR SFA, Dept Math & Informat, Abidjan 01, Cote Ivoire
[2] Inst Natl Polytech Houphouet Boigny Yamoussoukro, Yamoussoukro, Cote Ivoire
关键词
Semidiscretization; blow-up; numerical blow-up time; nonlinear heat equations; SEMILINEAR PARABOLIC EQUATIONS; REACTION-DIFFUSION EQUATIONS; ASYMPTOTIC-BEHAVIOR; TIME; DISCRETIZATIONS; APPROXIMATIONS; 2ND-ORDER; SYSTEM; SETS;
D O I
10.1007/s10114-011-8464-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the study of the numerical approximation for the following initialboundary value problem a, u (0) a C (1)([0, 1]), u (0)(0) = 0, u'(0)(1) = 0. We find some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove the convergence of the semidiscrete blow-up time to the theoretical one. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.
引用
收藏
页码:845 / 862
页数:18
相关论文
共 42 条
[1]   Blow-up for semi-discretizations of reaction-diffusion equations [J].
Abia, LM ;
LopezMarcos, JC ;
Martinez, J .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) :145-156
[2]   On the blow-up time convergence of semidiscretizations of reaction-diffusion equations [J].
Abia, LM ;
Lopez-Marcos, JC ;
Martinez, J .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (04) :399-414
[3]   An adaptive time step procedure for a parabolic problem with blow-up [J].
Acosta, G ;
Durán, RG ;
Rossi, JD .
COMPUTING, 2002, 68 (04) :343-373
[4]   Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions [J].
Acosta, G ;
Bonder, JF ;
Grosiman, P ;
Rossi, JD .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (01) :55-68
[5]  
ACOSTA G, 2002, DISC CONT SYST, V2, P3
[6]   Blowup in diffusion equations: A survey [J].
Bandle, C ;
Brunner, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :3-22
[7]   A RESCALING ALGORITHM FOR THE NUMERICAL-CALCULATION OF BLOWING-UP SOLUTIONS [J].
BERGER, M ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (06) :841-863
[8]  
Bonder JF, 2002, P AM MATH SOC, V130, P2049
[9]  
Bonder JF, 2001, P AM MATH SOC, V129, P139
[10]   On the blow-up and the asymptotic behaviour of the solution of one semilinear parabolic equation of second order [J].
Boni, TK .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03) :317-322