Probability Density Estimation for Object Recognition in Unmanned Aerial Vehicle Application

被引:0
作者
Kharchenko, V. P. [1 ]
Kukush, A. G. [2 ]
Kuzmenko, N. S. [3 ]
Ostroumov, I. V. [3 ]
机构
[1] Natl Aviat Univ, Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Kiev, Ukraine
[3] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
来源
2017 IEEE 4TH INTERNATIONAL CONFERENCE ACTUAL PROBLEMS OF UNMANNED AERIAL VEHICLES DEVELOPMENTS (APUAVD) | 2017年
关键词
Bayesian approach; frame; Nadaraya-Watson estimate; nonparametric regression; object recognition; probability density function; unmanned aerial vehicle; video-stream;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of object recognition in Unmanned Aerial Vehicle application is considered. Probabilistic Bayesian approach in object recognition is used. The accuracy of object recognition depends directly on the quality of prior data and accuracy of object parameters description. An approach for probability density estimation based of regression model is represented. Probability density functions are estimated by learning samples. The proposed approach is verified by laboratory experiment with video recording of object in rotatable platform.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
[31]   MEASUREMENT OF PESTICIDE DRIFT FROM UNMANNED AERIAL VEHICLE APPLICATION TO A VINEYARD [J].
Brown, C. R. ;
Giles, D. K. .
TRANSACTIONS OF THE ASABE, 2018, 61 (05) :1539-1546
[32]   OBJECT BASED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV) IMAGERY FOR FOREST FIRES MONITORING [J].
Bilgilioglu, B. Baha ;
Ozturk, Ozan ;
Sariturk, Batuhan ;
Seker, Dursun Zafer .
FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (02) :1011-1017
[33]   SPRAY APPLICATION EFFICIENCY FROM A MULTI-ROTOR UNMANNED AERIAL VEHICLE CONFIGURED FOR AERIAL PESTICIDE APPLICATION [J].
Richardson, B. ;
Rolando, C. A. ;
Kimberley, M. O. ;
Strand, T. M. .
TRANSACTIONS OF THE ASABE, 2019, 62 (06) :1447-1453
[34]   Robust attitude estimation for an unmanned aerial vehicle using multiple GPS receivers [J].
Dhahbane, Djamel ;
Nemra, Abdelkrim ;
Sakhi, Samir .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2022, 236 (16) :3540-3553
[35]   Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle [J].
Wickramasuriya, Maneesha ;
Lee, Taeyoung ;
Snyder, Murray .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2025, 48 (08) :1915-1930
[36]   Aerodynamic Parameter Estimation for a Morphing Unmanned Aerial Vehicle from Flight Tests [J].
Hui, Zhe ;
Chen, Gang .
JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2023, 20 (09) :588-595
[37]   Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle [J].
Kim, In-Ho ;
Jung, Hyung-Jo ;
Yoon, Sungsik ;
Park, Jong Woong .
REMOTE SENSING, 2023, 15 (16)
[38]   Antenna Arrays for Unmanned Aerial Vehicle [J].
Veronica Navarro-Mendez, Diana ;
Moy-Li, Hon Ching ;
Fernando Carrrera-Suarez, Luis ;
Ferrando-Bataller, Miguel ;
Baquero-Escudero, Mariano .
2015 9th European Conference on Antennas and Propagation (EuCAP), 2015,
[39]   Algorithm for unmanned aerial vehicle aerial different-source image matching [J].
Zuo, Yujia ;
Liu, Jinghong ;
Yang, Mingyu ;
Wang, Xuan ;
Sun, Mingchao .
OPTICAL ENGINEERING, 2016, 55 (12)
[40]   Simulation of Unmanned Aerial Vehicle for Mapping [J].
Turan, Burak ;
Turhan, Sultan N. ;
Pinarer, Ozgun ;
Bozkaya, Elif .
29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,