Probability Density Estimation for Object Recognition in Unmanned Aerial Vehicle Application

被引:0
|
作者
Kharchenko, V. P. [1 ]
Kukush, A. G. [2 ]
Kuzmenko, N. S. [3 ]
Ostroumov, I. V. [3 ]
机构
[1] Natl Aviat Univ, Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Kiev, Ukraine
[3] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
来源
2017 IEEE 4TH INTERNATIONAL CONFERENCE ACTUAL PROBLEMS OF UNMANNED AERIAL VEHICLES DEVELOPMENTS (APUAVD) | 2017年
关键词
Bayesian approach; frame; Nadaraya-Watson estimate; nonparametric regression; object recognition; probability density function; unmanned aerial vehicle; video-stream;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of object recognition in Unmanned Aerial Vehicle application is considered. Probabilistic Bayesian approach in object recognition is used. The accuracy of object recognition depends directly on the quality of prior data and accuracy of object parameters description. An approach for probability density estimation based of regression model is represented. Probability density functions are estimated by learning samples. The proposed approach is verified by laboratory experiment with video recording of object in rotatable platform.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [1] Stability derivatives estimation of unmanned aerial vehicle
    Sun, Y.P.
    Wu, L.T.
    Liang, Y.C.
    Key Engineering Materials, 2008, 381-382 : 137 - 140
  • [2] ANALYSIS OF THE PROBABILITY FOR BLOCKING AIRDROME RUNWAY WITH UNMANNED AERIAL VEHICLE
    Yin, Zhihong
    Gao, Wenkun
    Cui, Naigang
    Wei, Changzhu
    Zhang, Ke
    PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 2933 - 2938
  • [3] All-Day Object Tracking for Unmanned Aerial Vehicle
    Li, Bowen
    Fu, Changhong
    Ding, Fangqiang
    Ye, Junjie
    Lin, Fuling
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (08) : 4515 - 4529
  • [4] Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance
    Kim, Gyu Seon
    Lee, Haemin
    Park, Soohyun
    Kim, Joongheon
    ETRI JOURNAL, 2023, 45 (05) : 811 - 821
  • [5] Study on Application of Unmanned Aerial Vehicle for Disaster Monitoring
    Chen Cheng
    Tan YueJin
    Xing LiNing
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2012, 16 : 51 - 55
  • [6] Hierarchical Scale Awareness for object detection in Unmanned Aerial Vehicle Scenes
    Wang, Shijie
    Wan, Chaoying
    Yan, Jinqiang
    Li, Silong
    Sun, Tianmeng
    Chi, Jieru
    Yang, Guowei
    Chen, Chenglizhao
    Yu, Teng
    APPLIED SOFT COMPUTING, 2025, 168
  • [7] Parameter Estimation of an unmanned aerial vehicle using dandelion algorithm
    AlShabi, Mohammad
    Hassan, Omar Saleh Osman
    Obaideen, Khaled
    Gadsden, S. Andrew
    Bettayeb, Maamar
    UNMANNED SYSTEMS TECHNOLOGY XXVI, 2024, 13055
  • [8] Unmanned Aerial Vehicle Security Using Recursive Parameter Estimation
    Zachary Birnbaum
    Andrey Dolgikh
    Victor Skormin
    Edward O’Brien
    Daniel Muller
    Christina Stracquodaine
    Journal of Intelligent & Robotic Systems, 2016, 84 : 107 - 120
  • [9] A novel estimation method for blade impairments of unmanned aerial vehicle
    Zhang X.
    Ni M.
    Yu X.
    Guo L.
    Yu, Xiang (10296@buaa.edu.cn), 1600, Chinese Society of Astronautics (41):
  • [10] Unmanned Aerial Vehicle Security Using Recursive Parameter Estimation
    Birnbaum, Zachary
    Dolgikh, Andrey
    Skormin, Victor
    O'Brien, Edward
    Muller, Daniel
    Stracquodaine, Christina
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 84 (1-4) : 107 - 120