Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector

被引:53
作者
Fanali, Chiara [2 ]
Dugo, Laura [2 ]
D'Orazio, Giovanni [3 ]
Lirangi, Melania [2 ]
Dacha, Marina [2 ]
Dugo, Paola [1 ,2 ]
Mondello, Luigi [1 ,2 ]
机构
[1] Univ Messina, Dipartimento Farmacochim, Messina, Italy
[2] Univ Campus Biomed, Rome, Italy
[3] CNR, Ist Metodol Chim, Rome, Italy
关键词
Anthocyanins; Food analysis; Fruit juice; HPLC; Nano-liquid chromatography; ANTIOXIDANT CAPACITY; UNITED-STATES; COMMON FOODS; HPLC; IDENTIFICATION; SEPARATION; SWEET; QUANTIFICATION; RASPBERRIES; VEGETABLES;
D O I
10.1002/jssc.201000665
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 mm id and a 2.1 mm id narrow-bore C-18 column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 mu g/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e. g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
[1]  
Andersen O.M., 2001, Encyclopedia of Life Sciences
[2]   General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry [J].
Barnes, Jeremy S. ;
Nguyen, Hien P. ;
Shen, Sijia ;
Schug, Kevin A. .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (23) :4728-4735
[3]   CELLULOSE THIN-LAYER CHROMATOGRAPHIC SEPARATION OF RUBUS FRUIT ANTHOCYANINS [J].
BARRITT, BH ;
TORRE, LC .
JOURNAL OF CHROMATOGRAPHY, 1973, 75 (01) :151-155
[4]   Berries: emerging impact on cardiovascular health [J].
Basu, Arpita ;
Rhone, Michael ;
Lyons, Timothy J. .
NUTRITION REVIEWS, 2010, 68 (03) :168-177
[5]   Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices [J].
Bermúdez-Soto, MJ ;
Tomás-Barberán, FA .
EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2004, 219 (02) :133-141
[6]   Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries [J].
Borges, Gina ;
Degeneve, Alexandra ;
Mullen, William ;
Crozier, Alan .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (07) :3901-3909
[7]   Nutraceuticals:: Facts and fiction [J].
Carlos Espin, Juan ;
Teresa Garcia-Conesa, Maria ;
Tomas-Barberan, Francisco A. .
PHYTOCHEMISTRY, 2007, 68 (22-24) :2986-3008
[8]  
Cheynier V, 2005, AM J CLIN NUTR, V81, p223S, DOI 10.1093/ajcn/81.1.223S
[9]  
Clifford MN, 2000, J SCI FOOD AGR, V80, P1063, DOI 10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.3.CO
[10]  
2-H