Comparative Investigation of Various Evolutionary and Memetic Algorithms

被引:0
作者
Balazs, Krisztian [1 ]
Botzheim, Janos [2 ]
Koczy, Laszlo T. [1 ,3 ]
机构
[1] Budapest Univ Technol & Econ, Dept Telecommun & Media Informat, Budapest, Hungary
[2] Szechenyi Istvan Univ, Gyor, Hungary
[3] Szechenyi Istvan Univ, Inst Informat, Fac Engn, Dept Elect Mech Engn, Gyor, Hungary
来源
COMPUTATIONAL INTELLIGENCE IN ENGINEERING | 2010年 / 313卷
关键词
evolutionary algorithms; memetic algorithms; fuzzy rule-based learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimization methods known from the literature include gradient techniques and evolutionary algorithms. The main idea of gradient methods is to calculate the gradient of the objective function at the actual point and then to step towards better values according to this value. Evolutionary algorithms imitate a simplified abstract model of evolution observed in nature. Memetic algorithms traditionally combine evolutionary and gradient techniques to exploit the advantages of both methods. Our current research aims to discover the properties, especially the efficiency (i.e. the speed of convergence) of particular evolutionary and memetic algorithms. For this purpose the techniques are compared on several numerical optimization benchmark functions and on machine learning problems.
引用
收藏
页码:129 / +
页数:3
相关论文
共 22 条
[1]  
Ackley D.H., 1987, GENETIC ALGORITHMS S, P170
[2]  
[Anonymous], 2004, Introduction to Machine Learning
[3]  
[Anonymous], 1989, 826 CALTECH
[4]  
[Anonymous], 1992, ADAPTATION NATURAL A, DOI DOI 10.7551/MITPRESS/1090.001.0001
[5]  
Balazs K., 2008, P 9 INT S HUNG RES C, P61
[6]  
BALAZS K, 2009, THESIS BUDAPEST U TE
[7]  
BALAZS K, 2009, P 10 INT S HUNG RES, P193
[8]  
Botzheim J., 2005, P 11 WORLD C INT FUZ, P1563
[9]  
Driankov D., INTRO FUZZY CONTROL
[10]  
Drobics M, 2007, IEEE INT CONF FUZZY, P271