Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.)

被引:62
|
作者
Yue, Runqing [1 ,2 ]
Lu, Caixia [1 ,2 ]
Qi, Jianshuang [1 ,2 ]
Han, Xiaohua [1 ,2 ]
Yan, Shufeng [1 ,2 ]
Guo, Shulei [1 ,2 ]
Liu, Lu [1 ,2 ]
Fu, Xiaolei [1 ,2 ]
Chen, Nana [1 ,2 ]
Yin, Haiyan [1 ,2 ]
Chi, Haifeng [1 ,2 ]
Tie, Shuanggui [1 ,2 ]
机构
[1] Henan Acad Agr Sci, Food Crops Res Inst, Zhengzhou, Peoples R China
[2] Henan Prov Key Lab Maize Biol, Zhengzhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2016年 / 7卷
基金
中国国家自然科学基金;
关键词
auxin; auxin transport; cadmium; differentially expressed genes; maize; transcriptome; INDUCED OXIDATIVE STRESS; EXPRESSION ANALYSIS; AUXIN; TOXICITY; TOLERANCE; RESPONSES; BRASSINOSTEROIDS; ACCUMULATION; SEEDLINGS; ACID;
D O I
10.3389/fpls.2016.01298
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cadmium (Cd) is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize 'Zheng 58' root responses to Cd stress was sequenced using Illumina sequencing technology. In our study, six RNA-seq libraries yielded a total of 244 million clean short reads and 30.37 Gb of sequence data. A total of 6342 differentially expressed genes (DEGs) were grouped into 908 Gene Ontology (GO) categories and 198 Kyoto Encyclopedia of Genes and Genomes terms. GO term enrichment analysis indicated that various auxin signaling pathway -related GO terms were significantly enriched in DEGs. Comparison of the transcript abundances for auxin biosynthesis, transport, and downstream response genes revealed a universal expression response under Cd treatment. Furthermore, our data showed that free indole-3-acetic acid (IAA) levels were significantly reduced; but IAA oxidase activity was up-regulated after Cd treatment in maize roots. The analysis of Cd activity in maize roots under different Cd and auxin conditions confirmed that auxin affected Cd accumulation in maize seedlings. These results will improve our understanding of the complex molecular mechanisms underlying the response to Cd stress in maize roots.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Responses of wheat (Triticum aestivum L.) and maize (Zea mays L.) plants to cadmium toxicity in relation to magnesium nutrition
    Nikolic, Natasa
    Borisev, Milan
    Pajevic, Slobodanka
    Zupunski, Milan
    Topic, Mirjana
    Arsenov, Danijela
    ACTA BOTANICA CROATICA, 2014, 73 (02) : 359 - 373
  • [32] Uptake and accumulation of copper by roots and shoots of maize( Zea mays L.)
    LIU Dong hua 1*
    2 Library
    Journal of Environmental Sciences, 2001, (02) : 228 - 232
  • [33] Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.)
    Liu, DH
    Jiang, WS
    Hou, WQ
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2001, 13 (02) : 228 - 232
  • [34] Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil
    Rizwan, Muhammad
    Ali, Shafaqat
    Rehman, Muhammad Zia Ur
    Adrees, Muhammad
    Arshad, Muhammad
    Qayyum, Muhammad Farooq
    Ali, Liaqat
    Hussain, Afzal
    Chatha, Shahzad Ali Shahid
    Imran, Muhammad
    ENVIRONMENTAL POLLUTION, 2019, 248 : 358 - 367
  • [35] Cadmium negatively affects the growth and physiological status and the alleviation effects by exogenous selenium in silage maize (Zea mays L.)
    Jin, Weihuan
    Cheng, Lan
    Liu, Chunyan
    Liu, Haitao
    Jiao, Qiujuan
    Wang, Haoyang
    Deng, Zhaolong
    Seth, Chandra Shekhar
    Guo, Hongxiang
    Shi, Yong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (14) : 21646 - 21658
  • [36] GENOTYPE AND LIMING EFFECTS ON CADMIUM CONCENTRATION IN MAIZE (Zea mays L.)
    Kovacevic, Vlado
    Simic, Domagoj
    Kadar, Imre
    Knezevic, Desimir
    Loncaric, Zdenko
    GENETIKA-BELGRADE, 2011, 43 (03): : 607 - 615
  • [37] EFFECTS OF BRASSINOLIDE ON THE PHYSIOLOGICAL CHARACTERISTICS OF MAIZE (ZEA MAYS L.) CULTIVARS UNDER SALT STRESS
    Ji, Biao
    Li, Jie
    Xia, Yina
    Li, Zan
    BANGLADESH JOURNAL OF BOTANY, 2023, 52 (02): : 551 - 558
  • [38] CITRIC ACID MEDIATED PHYTOEXTRACTION OF CADMIUM BY MAIZE (ZEA MAYS L.)
    Anwer, S.
    Ashraf, M. Yasin
    Hussain, M.
    Ashraf, M.
    Jamil, A.
    PAKISTAN JOURNAL OF BOTANY, 2012, 44 (06) : 1831 - 1836
  • [39] Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.)
    Hou, Yaling
    Zeng, Wenzhi
    Ao, Chang
    Huang, Jiesheng
    JOURNAL OF BIOTECHNOLOGY, 2024, 383 : 39 - 54
  • [40] Thiols in cadmium- and copper-treated maize (Zea mays L)
    Galli, U
    Schuepp, H
    Brunold, C
    PLANTA, 1996, 198 (01) : 139 - 143