Stepwise dynamics of epitaxially growing single amyloid fibrils

被引:92
作者
Kellermayer, Miklos S. Z. [1 ]
Karsai, Arpad [1 ]
Benke, Margit [1 ]
Soos, Katalin [2 ]
Penke, Botond [3 ,4 ]
机构
[1] Univ Pecs, Dept Biophys, Fac Med, H-7624 Pecs, Hungary
[2] Univ Szeged, Hungarian Acad Sci, Supramol & Nanostructured Mat Res Grp, H-6720 Szeged, Hungary
[3] Univ Szeged, Hungarian Acad Sci, Dept Med Chem, H-6720 Szeged, Hungary
[4] Univ Szeged, Hungarian Acad Sci, Prot Res Grp, H-6720 Szeged, Hungary
关键词
atomic force microscopy; beta-amyloid; growth dynamics; self-assembly;
D O I
10.1073/pnas.0704305105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The assembly mechanisms of amyloid fibrils, tissue deposits in a variety of degenerative diseases, is poorly understood. With a simply modified application of the atomic force microscope, we monitored the growth, on mica surface, of individual fibrils of the amyloid beta 25-35 peptide with near-subunit spatial and subsecond temporal resolution. Fibril assembly was polarized and discontinuous. Bursts of rapid (up to 300-nm(-1)) growth phases that extended the fibril by approximate to 7 nm or its integer multiples were interrupted with pauses. Stepwise dynamics were also observed for amyloid beta 1-42 fibrils growing on graphite, suggesting that the discontinuous assembly mechanisms may be a general feature of epitaxial amyloid growth. Amyloid assembly may thus involve fluctuation between a fast-growing and a blocked state in which the fibril is kinetically trapped because of intrinsic structural features. The used scanning-force kymography method may be adapted to analyze the assembly dynamics of a wide range of linear biopolymers.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 23 条
  • [1] Fine structure study of Aβ1-42 fibrillogenesis with atomic force microscopy
    Arimon, M
    Díez-Pérez, I
    Kogan, MJ
    Durany, N
    Giralt, E
    Sanz, F
    Fernàndez-Busquets, X
    [J]. FASEB JOURNAL, 2005, 19 (07) : 1344 - +
  • [2] Direct observation of Aβ amyloid fibril growth and inhibition
    Ban, T
    Hoshino, M
    Takahashi, S
    Hamada, D
    Hasegawa, K
    Naiki, H
    Goto, Y
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (03) : 757 - 767
  • [3] Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence
    Ban, T
    Hamada, D
    Hasegawa, K
    Naiki, H
    Goto, Y
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) : 16462 - 16465
  • [4] In-situ atomic force microscopy study of β-amyloid fibrillization
    Blackley, HKL
    Sanders, GHW
    Davies, MC
    Roberts, CJ
    Tendler, SJB
    Wilkinson, MJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) : 833 - 840
  • [5] Protein folding and misfolding
    Dobson, CM
    [J]. NATURE, 2003, 426 (6968) : 884 - 890
  • [6] Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism
    Esler, WP
    Stimson, ER
    Jennings, JM
    Vinters, HV
    Ghilardi, JR
    Lee, JP
    Mantyh, PW
    Maggio, JE
    [J]. BIOCHEMISTRY, 2000, 39 (21) : 6288 - 6295
  • [7] APOPTOSIS MEDIATED NEUROTOXICITY INDUCED BY CHRONIC APPLICATION OF BETA-AMYLOID FRAGMENT 25-35
    FORLONI, G
    CHIESA, R
    SMIROLDO, S
    VERGA, L
    SALMONA, M
    TAGLIAVINI, F
    ANGERETTI, N
    [J]. NEUROREPORT, 1993, 4 (05) : 523 - 526
  • [8] Watching amyloid fibrils grow by time-lapse atomic force microscopy
    Goldsbury, C
    Kistler, J
    Aebi, U
    Arvinte, T
    Cooper, GJS
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) : 33 - 39
  • [9] Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy
    Hoyer, WG
    Cherny, D
    Subramaniam, V
    Jovin, TM
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (01) : 127 - 139
  • [10] Potassium-dependent oriented growth of amyloid β25-35 fibrils on mica
    Karsai, Arpad
    Grama, Laszlo
    Murvai, Uenige
    Soos, Katalin
    Penke, Botond
    Kellermayer, Miklos S. Z.
    [J]. NANOTECHNOLOGY, 2007, 18 (34)