共 23 条
Stepwise dynamics of epitaxially growing single amyloid fibrils
被引:92
作者:
Kellermayer, Miklos S. Z.
[1
]
Karsai, Arpad
[1
]
Benke, Margit
[1
]
Soos, Katalin
[2
]
Penke, Botond
[3
,4
]
机构:
[1] Univ Pecs, Dept Biophys, Fac Med, H-7624 Pecs, Hungary
[2] Univ Szeged, Hungarian Acad Sci, Supramol & Nanostructured Mat Res Grp, H-6720 Szeged, Hungary
[3] Univ Szeged, Hungarian Acad Sci, Dept Med Chem, H-6720 Szeged, Hungary
[4] Univ Szeged, Hungarian Acad Sci, Prot Res Grp, H-6720 Szeged, Hungary
来源:
关键词:
atomic force microscopy;
beta-amyloid;
growth dynamics;
self-assembly;
D O I:
10.1073/pnas.0704305105
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The assembly mechanisms of amyloid fibrils, tissue deposits in a variety of degenerative diseases, is poorly understood. With a simply modified application of the atomic force microscope, we monitored the growth, on mica surface, of individual fibrils of the amyloid beta 25-35 peptide with near-subunit spatial and subsecond temporal resolution. Fibril assembly was polarized and discontinuous. Bursts of rapid (up to 300-nm(-1)) growth phases that extended the fibril by approximate to 7 nm or its integer multiples were interrupted with pauses. Stepwise dynamics were also observed for amyloid beta 1-42 fibrils growing on graphite, suggesting that the discontinuous assembly mechanisms may be a general feature of epitaxial amyloid growth. Amyloid assembly may thus involve fluctuation between a fast-growing and a blocked state in which the fibril is kinetically trapped because of intrinsic structural features. The used scanning-force kymography method may be adapted to analyze the assembly dynamics of a wide range of linear biopolymers.
引用
收藏
页码:141 / 144
页数:4
相关论文