On line parameter identification of an induction motor, using improved particle swarm optimization

被引:0
|
作者
Chen Guangyi [1 ]
Wei, Guo [1 ,2 ]
Huang Kaisheng [2 ]
机构
[1] Foshan Univ, Dept Automat, Foshan 528200, Peoples R China
[2] Guangdong Univ Technol, Fac Automat, Guangzhou 510090, Peoples R China
来源
PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5 | 2007年
关键词
improved particle swarm optimization; induction motor; parameter identification; saturable model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper introduces a improved particle swarm optimization (IPSO) algorithm with dynamic inertia weight and applies this method to parameter identification of induction machine including the effects of saturation. The machine dynamics can be presented as a set of time-varying differential equations with machine saturated inductances modeled by nonlinear functions of exciting. current ([9]). Based on the data acquired from the 1.1 kw induction motor, a comparison between the real parameters response with that determined by the proposed algorithm have been presented, and the result of identification using the GA(genetic algorithm) and standard particle swarm optimization algorithm have also been provided. The results show that the performance of the IPSO is better than other techniques. It is concluded that IPSO is a effective algorithm for parameters identification.
引用
收藏
页码:745 / +
页数:3
相关论文
共 50 条
  • [41] Parameter Identification of an Induction Motor at Standstill Using Vector Constructing Method
    He, Yanhui
    Feng, Yupeng
    Wang, Yue
    Wang, Zhao'an
    Lei, Wanjun
    2010 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, 2010, : 4204 - 4209
  • [42] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [43] Estimation of a five-parameter JONSWAP spectra with an improved particle swarm optimization
    Deng, Fangyu
    Wang, Juan
    Wang, Jichao
    APPLIED OCEAN RESEARCH, 2023, 136
  • [44] On-Line Parameter Identification of Induction Motor Based On RLS Algorithm
    Zhang Hu
    Gong Shu-juan
    Dong Zi-zhao
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2013, : 2132 - 2137
  • [45] Parameter identification of the phenomenological model for magnetorheological fluid dampers using hierarchic enhanced particle swarm optimization
    Jin Guo
    Zhendong Li
    Mengxuan Zhang
    Journal of Mechanical Science and Technology, 2021, 35 : 875 - 887
  • [46] Parameter identification of the phenomenological model for magnetorheological fluid dampers using hierarchic enhanced particle swarm optimization
    Guo, Jin
    Li, Zhendong
    Zhang, Mengxuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (03) : 875 - 887
  • [47] Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method
    Rahman, Md Ashiqur
    Anwar, Sohel
    Izadian, Afshin
    JOURNAL OF POWER SOURCES, 2016, 307 : 86 - 97
  • [48] Parameter Identification of SVG Using Multilayer Coarse-to-Fine Grid Searching and Particle Swarm Optimization
    Gao, Huimin
    Diao, Ruisheng
    Huang, Zhuo
    Zhong, Yi
    Mao, Yanfang
    Tang, Wenbin
    IEEE ACCESS, 2022, 10 : 77137 - 77146
  • [49] Advanced Particle Swarm Optimization for Parameter Identification of Three-Phase DFIM
    Mahdavi, M.
    Jalilzadeh, S.
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 580 - +
  • [50] Parameter Identification of Wiener Model with Discontinuous Nonlinearities Using Hybrid Simplex Search and Particle Swarm Optimization
    Tang, Yinggan
    Qiao, Leijie
    Guan, Xinping
    NEUROQUANTOLOGY, 2008, 6 (04) : 387 - 396