On line parameter identification of an induction motor, using improved particle swarm optimization

被引:0
|
作者
Chen Guangyi [1 ]
Wei, Guo [1 ,2 ]
Huang Kaisheng [2 ]
机构
[1] Foshan Univ, Dept Automat, Foshan 528200, Peoples R China
[2] Guangdong Univ Technol, Fac Automat, Guangzhou 510090, Peoples R China
来源
PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5 | 2007年
关键词
improved particle swarm optimization; induction motor; parameter identification; saturable model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper introduces a improved particle swarm optimization (IPSO) algorithm with dynamic inertia weight and applies this method to parameter identification of induction machine including the effects of saturation. The machine dynamics can be presented as a set of time-varying differential equations with machine saturated inductances modeled by nonlinear functions of exciting. current ([9]). Based on the data acquired from the 1.1 kw induction motor, a comparison between the real parameters response with that determined by the proposed algorithm have been presented, and the result of identification using the GA(genetic algorithm) and standard particle swarm optimization algorithm have also been provided. The results show that the performance of the IPSO is better than other techniques. It is concluded that IPSO is a effective algorithm for parameters identification.
引用
收藏
页码:745 / +
页数:3
相关论文
共 50 条
  • [1] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [2] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [3] Parameter Optimization of PID Controller Based on an Improved Particle Swarm Optimization for the Induction Motor
    Shi, Xia-bo
    Lin, Wei-xing
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 1938 - 1942
  • [4] Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
    Zhou, Shuai
    Wang, Dazhi
    Ni, Yongliang
    Song, Keling
    Li, Yanming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2187 - 2207
  • [5] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [6] An Improved Off-line Identification Technology of Induction Motor Parameter
    Zhang, Hu
    Sun, Tianshuo
    Yuan, Guofeng
    2016 19TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2016), 2016,
  • [7] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [8] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [9] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [10] Improved artificial fish swarm algorithm applied on the static model of the induction motor parameter identification
    Lv, Jingyong
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 753 - 761