Conducting Confirmatory Latent Class Analysis Using Mplus

被引:201
|
作者
Finch, W. Holmes [1 ]
Bronk, Kendall Cotton [1 ]
机构
[1] Ball State Univ, Dept Educ Psychol, Muncie, IN 47306 USA
关键词
LIKELIHOOD RATIO; NUMBER;
D O I
10.1080/10705511.2011.532732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Latent class analysis (LCA) is an increasingly popular tool that researchers can use to identify latent groups in the population underlying a sample of responses to categorical observed variables. LCA is most commonly used in an exploratory fashion whereby no parameters are specified a priori. Although this exploratory approach is reasonable when very little prior research has been conducted in the area under study, it can be very limiting when much is already known about the variables and population. Confirmatory latent class analysis (CLCA) provides researchers with a tool for modeling and testing specific hypotheses about response patterns in the observed variables. CLCA is based on placing specific constraints on the parameters to reflect these hypotheses. The popular and easy-to-use latent variable modeling software package Mplus can be used to conduct a variety of CLCA types using these parameter constraints. This article focuses on the basic principles underlying the use of CLCA, and the Mplus programming code necessary for carrying it out.
引用
收藏
页码:132 / 151
页数:20
相关论文
共 50 条
  • [31] Analyzing measurement models of latent variables through multilevel confirmatory factor analysis and hierarchical linear modeling approaches
    Li, Fuzhong
    Duncan, Terry E.
    Harmer, Peter
    Acock, Alan
    Stoolmiller, Mike
    Structural Equation Modeling, 1998, 5 (03): : 294 - 306
  • [32] Determination of psychosis-related clinical profiles in children with autism spectrum disorders using latent class analysis
    Kyriakopoulos, Marinos
    Stringaris, Argyris
    Manolesou, Sofia
    Radobuljac, Maja Drobnic
    Jacobs, Brian
    Reichenberg, Avi
    Stahl, Daniel
    Simonoff, Emily
    Frangou, Sophia
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2015, 24 (03) : 301 - 307
  • [33] Latent class analysis of bipolar disorder symptoms and suicidal ideation and behaviors
    Au, Josephine S.
    de Andino, Ana Martinez
    Mekawi, Yara
    Silverstein, Madison W.
    Lamis, Dorian A.
    BIPOLAR DISORDERS, 2021, 23 (02) : 186 - 195
  • [34] Internalizing and Externalizing Classes in Posttraumatic Stress Disorder: A Latent Class Analysis
    Forbes, David
    Elhai, Jon D.
    Miller, Mark W.
    Creamer, Mark
    JOURNAL OF TRAUMATIC STRESS, 2010, 23 (03) : 340 - 349
  • [35] Symptom Clusters in Breast Cancer Survivors: A Latent Class Profile Analysis
    Lee, Lena J.
    Ross, Alyson
    Griffith, Kathleen
    Jensen, Roxanne E.
    Wallen, Gwenyth R.
    ONCOLOGY NURSING FORUM, 2020, 47 (01) : 89 - 100
  • [36] Uncovering Categories of Civically Engaged College Students: A Latent Class Analysis
    Weerts, David J.
    Cabrera, Alberto F.
    Mejias, Paulina Perez
    REVIEW OF HIGHER EDUCATION, 2014, 37 (02) : 141 - +
  • [37] Adolescent struggling readers in urban schools: Results of a Latent Class Analysis
    Brasseur-Hock, Irma F.
    Hock, Michael F.
    Kieffer, Michael J.
    Biancarosa, Gina
    Deshler, Donald D.
    LEARNING AND INDIVIDUAL DIFFERENCES, 2011, 21 (04) : 438 - 452
  • [38] Classifying patients by their characteristics and clinical presentations; the use of latent class analysis
    Wraith, Darren
    Wolfe, Rory
    RESPIROLOGY, 2014, 19 (08) : 1138 - 1148
  • [39] Patterns of Alcohol Access Among Brazilian Adolescents: A Latent Class Analysis
    de Medeiros, Pollyanna Fausta Pimentel
    Valente, Juliana Y.
    Rezende, Leandro F. M.
    Sanchez, Zila M.
    INTERNATIONAL JOURNAL OF MENTAL HEALTH AND ADDICTION, 2024,
  • [40] Latent class analysis of lifestyle behavior among Chilean university students
    Nazar, Gabriela
    Stiepovic, Jasna
    Bustos, Claudio
    INTERNATIONAL JOURNAL OF HEALTH PROMOTION AND EDUCATION, 2019, 57 (02) : 98 - 111