Conducting Confirmatory Latent Class Analysis Using Mplus

被引:201
|
作者
Finch, W. Holmes [1 ]
Bronk, Kendall Cotton [1 ]
机构
[1] Ball State Univ, Dept Educ Psychol, Muncie, IN 47306 USA
关键词
LIKELIHOOD RATIO; NUMBER;
D O I
10.1080/10705511.2011.532732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Latent class analysis (LCA) is an increasingly popular tool that researchers can use to identify latent groups in the population underlying a sample of responses to categorical observed variables. LCA is most commonly used in an exploratory fashion whereby no parameters are specified a priori. Although this exploratory approach is reasonable when very little prior research has been conducted in the area under study, it can be very limiting when much is already known about the variables and population. Confirmatory latent class analysis (CLCA) provides researchers with a tool for modeling and testing specific hypotheses about response patterns in the observed variables. CLCA is based on placing specific constraints on the parameters to reflect these hypotheses. The popular and easy-to-use latent variable modeling software package Mplus can be used to conduct a variety of CLCA types using these parameter constraints. This article focuses on the basic principles underlying the use of CLCA, and the Mplus programming code necessary for carrying it out.
引用
收藏
页码:132 / 151
页数:20
相关论文
共 50 条
  • [1] The Vuong-Lo-Mendell-Rubin Test for Latent Class and Latent Profile Analysis: A Note on the Different Implementations in Mplus and LatentGOLD
    Vermunt, Jeroen K.
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2024, 20 (01) : 72 - 83
  • [2] Finding latent groups in observed data: A primer on latent profile analysis in Mplus for applied researchers
    Ferguson, Sarah L.
    Moore, E. Whitney G.
    Hull, Darrell M.
    INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT, 2020, 44 (05) : 458 - 468
  • [3] Understanding Trust in Contemporary Australia Using Latent Class Analysis
    Kamp, Alanna
    Dunn, Kevin
    Sharples, Rachel
    Denson, Nida
    Diallo, Thierno
    COSMOPOLITAN CIVIL SOCIETIES-AN INTERDISCIPLINARY JOURNAL, 2023, 15 (02): : 84 - 104
  • [4] Scalable and robust latent trajectory class analysis using artificial likelihood
    Hart, Kari R.
    Fei, Teng
    Hanfelt, John J.
    BIOMETRICS, 2021, 77 (03) : 1118 - 1128
  • [5] An Exploration of the Authoritative School Climate Construct Using Multilevel Latent Class Analysis
    Mayworm, Ashley M.
    Sharkey, Jill D.
    Nylund-Gibson, Karen
    CONTEMPORARY SCHOOL PSYCHOLOGY, 2023, 27 (02) : 283 - 302
  • [6] Intersectional identity approach to chronic pain disparities using latent class analysis
    Newman, Andrea K.
    Thorn, Beverly E.
    PAIN, 2022, 163 (04) : E547 - E556
  • [7] Methodological example of a latent class analysis with R
    Bellemare-Lepage, Agathe
    Chatelois, Marion
    Caron, Pier-Olivier
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2023, 19 (02): : 217 - 229
  • [8] Latent Class Analysis: A Guide to Best Practice
    Weller, Bridget E.
    Bowen, Natasha K.
    Faubert, Sarah J.
    JOURNAL OF BLACK PSYCHOLOGY, 2020, 46 (04) : 287 - 311
  • [9] Commentary on latent class, latent profile, and latent transition analysis for characterizing individual differences in learning
    Bray, Bethany C.
    Dziak, John J.
    LEARNING AND INDIVIDUAL DIFFERENCES, 2018, 66 : 105 - 110
  • [10] Using Latent Class Analysis to Examine Susceptibility to Various Tobacco Products Among Adolescents
    Bold, Krysten W.
    Buta, Eugenia
    Simon, Patricia
    Kong, Grace
    Morean, Meghan
    Camenga, Deepa
    Krishnan-Sarin, Suchitra
    NICOTINE & TOBACCO RESEARCH, 2020, 22 (11) : 2059 - 2065