A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function

被引:6
作者
Khan, Ayub [1 ]
Khan, Nasreen [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, Delhi, India
关键词
chaos entanglement function; finite-time; fractional-order chaotic system; state variable estimation observer; PERIODIC-SOLUTIONS; SYNCHRONIZATION; DYNAMICS; ALGORITHMS; EXISTENCE; MODEL;
D O I
10.1002/mma.7802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper has extensively investigated a new fractional-order chaotic system based on a chaos entanglement function. The rich dynamics of the system are observed by various tools such as equilibrium point stability, Lyapunov exponents, bifurcation diagram, and limit cycles. The unexplored hidden multistability is discovered by changing the derivative order and system parameter values. We have also derived a new finite-time terminal observer to estimate the state variables of the fractional-order system whose convergence time solely depends on considered parameters. Simulations are realized to confirm the theoretical results.
引用
收藏
页码:640 / 656
页数:17
相关论文
共 50 条
[1]   Complex dynamics of some models of antimicrobial resistance on complex networks [J].
Ahmed, Elsayd ;
Matouk, Ahmed E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) :1896-1912
[2]   Chaotic dynamics and chaos control for the fractional-order geomagnetic field model [J].
Al-khedhairi, A. ;
Matouk, A. E. ;
Khan, I .
CHAOS SOLITONS & FRACTALS, 2019, 128 :390-401
[3]  
[Anonymous], 2003, INTRO APPL NONLINEAR, DOI DOI 10.1007/B97481
[4]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314
[5]   Matlab Code for Lyapunov Exponents of Fractional-Order Systems [J].
Danca, Marius-F. ;
Kuznetsov, Nikolay .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05)
[6]   Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics [J].
Defoort, Michael ;
Polyakov, Andrey ;
Demesure, Guillaume ;
Djemai, Mohamed ;
Veluvolu, Kalyana .
IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (14) :2165-2170
[7]   Robust Finite-time Synchronization of Non-identical Fractional-order Hyperchaotic Systems and Its Application in Secure Communication [J].
Delavari, Hadi ;
Mohadeszadeh, Milad .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) :228-235
[8]   Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter [J].
Delavari, Hadi ;
Senejohnny, Danial M. ;
Baleanu, Dumitru .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (05) :1095-1101
[9]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22