Moduli spaces of higher spin curves and integrable hierarchies

被引:68
作者
Jarvis, TJ [1 ]
Kimura, T
Vaintrob, A
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Boston Univ, Dept Math, Boston, MA 02215 USA
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
higher spin curves; integrable hierarchies; Frobenius manifolds; cohomological field theories; generalized Witten conjecture;
D O I
10.1023/A:1017528003622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the genus zero part of the generalized Witten conjecture, relating moduli spaces of higher spin curves to Gelfand-Dickey hierarchies. That is, we show that intersection numbers on the moduli space of stable r-spin curves assemble into a generating function which yields a solution of the semiclassical limit of the KdV(r) equations. We formulate axioms for a cohomology class on this moduli space which allow one to construct a cohomological field theory of rank r-1 in all genera. In genus zero it produces a Frobenius manifold which is isomorphic to the Frobenius manifold structure on the base of the versal deformation of the singularity A(r-1). We prove analogs of the puncture, dilaton, and topological recursion relations by drawing an analogy with the construction of Gromov-Witten invariants and quantum cohomology.
引用
收藏
页码:157 / 212
页数:56
相关论文
共 29 条
[1]   A MATRIX INTEGRAL SOLUTION TO 2-DIMENSIONAL W(P)-GRAVITY [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :25-56
[2]   THE PICARD-GROUPS OF THE MODULI SPACES OF CURVES [J].
ARBARELLO, E ;
CORNALBA, M .
TOPOLOGY, 1987, 26 (02) :153-171
[3]  
Belorousski P, 2000, ANN SCUOLA NORM-SCI, V29, P171
[4]  
DELIGNE P., 1987, Contemp. Math., V67, P93
[5]   MEAN FIELD-THEORY, TOPOLOGICAL FIELD-THEORY, AND MULTIMATRIX MODELS [J].
DIJKGRAAF, R ;
WITTEN, E .
NUCLEAR PHYSICS B, 1990, 342 (03) :486-522
[6]   Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation [J].
Dubrovin, B ;
Zhang, YJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (02) :311-361
[7]   Hedge integrals and Gromov-Witten theory [J].
Faber, C ;
Pandharipande, R .
INVENTIONES MATHEMATICAE, 2000, 139 (01) :173-199
[8]  
Fulton W., 1997, Proceedings of Symposia in Pure Mathematics, V62, P45
[9]   Virasoro constraints and the Chern classes of the Hodge bundle [J].
Getzler, E ;
Pandharipande, R .
NUCLEAR PHYSICS B, 1998, 530 (03) :701-714
[10]   Modular operads [J].
Getzler, E ;
Kapranov, MM .
COMPOSITIO MATHEMATICA, 1998, 110 (01) :65-126