Any smooth knot Sn ↪ Rn+2 is isotopic to a cubic knot contained in the canonical scaffolding of Rn+2

被引:0
作者
Boege, Margareta [1 ]
Hinojosa, Gabriela [2 ]
Verjovsky, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62209, Morelos, Mexico
[2] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62209, Morelos, Mexico
来源
REVISTA MATEMATICA COMPLUTENSE | 2011年 / 24卷 / 01期
关键词
High dimensional knots; Cubic complexes; COMPLEXES; MANIFOLDS;
D O I
10.1007/s13163-010-0037-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The n-skeleton of the canonical cubulation C of Rn+2 into unit cubes is called the canonical scaffolding S. In this paper, we prove that any smooth, compact, closed, n-dimensional submanifold of Rn+2 with trivial normal bundle can be continuously isotoped by an ambient isotopy to a cubic submanifold contained in S. In particular, any smooth knot S-n hooked right arrow Rn+2 can be continuously isotoped to a knot contained in S.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 15 条
[1]  
[Anonymous], PUBLICATIONS MATH IH
[2]   WILD KNOTS IN HIGHER DIMENSIONS AS LIMIT SETS OF KLEINIAN GROUPS [J].
Boege, Margareta ;
Hinojosa, Gabriela ;
Verjovsky, Alberto .
CONFORMAL GEOMETRY AND DYNAMICS, 2009, 13 :197-216
[3]   A SIMPLE TRIANGULATION METHOD FOR SMOOTH MANIFOLDS [J].
CAIRNS, SS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (04) :389-&
[4]  
CERNAVSKII AV, 1964, USP MAT NAUK, V19, P71
[5]   CUBIC MANIFOLDS IN LATTICES [J].
DOLBILIN, NP ;
SHTANKO, MA ;
SHTOGRIN, MI .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 44 (02) :301-313
[6]  
Fenn R., 1996, J BUNDLES APPL
[7]   Cubulations, immersions, mappability and a problem of Habegger [J].
Funar, L .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (05) :681-700
[8]  
FUNAR L, 1998, CONT MATH, V233, P29
[9]   Surface cubications mod flips [J].
Funar, Louis .
MANUSCRIPTA MATHEMATICA, 2008, 125 (03) :285-307
[10]   Finite-type invariants of cubic complexes [J].
Matveev, S ;
Polyak, M .
ACTA APPLICANDAE MATHEMATICAE, 2003, 75 (1-3) :125-132