Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide

被引:355
作者
de Haan, JB
Bladier, C
Griffiths, P
Kelner, M
O'Shea, RD
Cheung, NS
Bronson, RT
Silvestro, MJ
Wild, S
Zheng, SS
Beart, PM
Hertzog, PJ
Kola, I
机构
[1] Monash Med Ctr, Inst Reprod & Dev, Mol Genet & Dev Grp, Clayton, Vic 3168, Australia
[2] Univ Calif San Diego, Dept Pathol, San Diego, CA 92103 USA
[3] Monash Univ, Dept Pharmacol, Clayton, Vic 3168, Australia
[4] Tufts Univ, Sch Med, Dept Pathol, Boston, MA 02111 USA
关键词
D O I
10.1074/jbc.273.35.22528
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutathione peroxidases have been thought to function in cellular antioxidant defense. However, some recent studies on Gpx1 knockout (-/-) mice have failed to show a role for Gpx1 under conditions of oxidative stress such as hyperbaric oxygen and the exposure of eye lenses to high levels of H2O2. These findings have, unexpectedly, raised the issue of the role of Gpx1, especially under conditions of oxidative stress. Here we demonstrate a role for Gpx1 in protection against oxidative stress by showing that Gpx1 (-/-) mice are highly sensitive to the oxidant paraquat. Lethality was already detected within 24 h in mice exposed to paraquat at 10 mg . kg(-1) (approximately 1/7 the LD50 of wild-type controls). The effects of paraquat were dose-related. In the 30 mg . kg(-1)-treated group, 100% of mice died within 5 h, whereas the controls showed no evidence of toxicity. me further demonstrate that paraquat transcriptionally upregulates Gpx1 in normal cells, reinforcing a role for Gpzl in protection against paraquat toxicity. Finally, we show that cortical neurons from Gpx1 (-/-) mice are more susceptible to H2O2; 30% of neurons from Gpx1 (-/-) mice were killed when exposed to 65 mu M H2O2, whereas the wild-type controls were unaffected. These data establish a function for Gpx1 in protection against some oxidative stressors and in protection of neurons against H2O2. Further, they emphasize the need to elucidate the role of Gpx1 in protection against different oxidative stressors and in different disease states and suggest that Gpx1 (-/-) mice may be valuable for studying the role of H2O2 in neurodegenerative disorders.
引用
收藏
页码:22528 / 22536
页数:9
相关论文
共 62 条
[1]  
BALDIER C, 1997, CELL GROWTH DIFFER, V8, P589
[2]   Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenic-Cu/Zn superoxide dismutase neurons [J].
BarPeled, O ;
Korkotian, E ;
Segal, M ;
Groner, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8530-8535
[3]   HYDROGEN-PEROXIDE MEDIATES AMYLOID-BETA PROTEIN TOXICITY [J].
BEHL, C ;
DAVIS, JB ;
LESLEY, R ;
SCHUBERT, D .
CELL, 1994, 77 (06) :817-827
[4]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[5]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[6]   MECHANISM OF PARAQUAT TOXICITY IN MICE AND RATS [J].
BUS, JS ;
CAGEN, SZ ;
OLGAARD, M ;
GIBSON, JE .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1976, 35 (03) :501-513
[7]   SUPEROXIDE-CATALYZED AND SINGLET OXYGEN-CATALYZED LIPID PEROXIDATION AS A POSSIBLE MECHANISM FOR PARAQUAT (METHYL VIOLOGEN) TOXICITY [J].
BUS, JS ;
GIBSON, JE ;
AUST, SD .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1974, 58 (03) :749-755
[8]  
BUSCIGLIO J, 1995, NATURE, V378, P777
[9]   THE STRUCTURE OF THE MOUSE GLUTATHIONE-PEROXIDASE GENE - THE SELENOCYSTEINE IN THE ACTIVE-SITE IS ENCODED BY THE TERMINATION CODON, TGA [J].
CHAMBERS, I ;
FRAMPTON, J ;
GOLDFARB, P ;
AFFARA, N ;
MCBAIN, W ;
HARRISON, PR .
EMBO JOURNAL, 1986, 5 (06) :1221-1227
[10]   Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues [J].
Cheng, WH ;
Ho, YS ;
Ross, DA ;
Valentine, BA ;
Combs, GF ;
Lei, XG .
JOURNAL OF NUTRITION, 1997, 127 (08) :1445-1450