The volume preserving mean curvature flow near spheres

被引:94
作者
Escher, J
Simonett, G
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
generalized motion by mean curvature; center manifolds;
D O I
10.1090/S0002-9939-98-04727-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of a center manifold analysis we investigate the averaged mean curvature flow near spheres. In particular, we show that there exist global solutions to this flow starting from non-convex initial hypersurfaces.
引用
收藏
页码:2789 / 2796
页数:8
相关论文
共 13 条
  • [1] ALEXANDROV A, 1962, VESTNIK LENINGRAD U, V11, P341, DOI DOI 10.1090/TRANS2/021/09
  • [2] Amann H., 1993, FUNCTION SPACES DIFF, P9
  • [3] Da Prato G., 1979, Ann. Mat. Pura Appl., V120, P329
  • [4] STABILITY, INSTABILITY AND CENTER MANIFOLD THEOREM FOR FULLY NONLINEAR AUTONOMOUS PARABOLIC EQUATIONS IN BANACH-SPACE
    DAPRATO, G
    LUNARDI, A
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 101 (02) : 115 - 141
  • [5] Escher J., 1997, ADV DIFFERENTIAL EQU, V2, P619
  • [6] ESCHER J, IN PRESS J DIFFERENT
  • [7] Escher J, 1996, MATH RES LETT, V3, P467
  • [8] GAGE M, 1986, J DIFFER GEOM, V23, P69
  • [9] Gage M., 1986, Contemp. Math., V51, P51, DOI DOI 10.1090/CONM/051/848933
  • [10] HUISKEN G, 1987, J REINE ANGEW MATH, V382, P35