Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries

被引:94
作者
Ye, Zhengqing [1 ]
Jiang, Ying [1 ]
Feng, Tao [1 ]
Wang, Ziheng [1 ]
Li, Li [1 ,2 ]
Wu, Feng [1 ,2 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Polysulfide shuttling; Synergistic engineering layer; Sn4P3 nanodots electrocatalyst; Acorn shell biowaste; Lithium-sulfur batteries; ENERGY-DENSITY; MODIFIED SEPARATOR; REDOX; INTERCALATION; ELECTROLYTE; PERFORMANCE; CAPACITANCE; CONVERSION; NITROGEN; CATHODE;
D O I
10.1016/j.nanoen.2020.104532
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The shuttle effect in lithium-sulfur (Li-S) batteries mainly originates from the diffusion of soluble polysulfides (LiPSs) and their depressed redox kinetics. Herein, we report a synergistic engineering layer composed of acorn shell porous carbon/Sn4P3 nanodots electrocatalyst (AS PC-Sn4P3). The synergistic engineering layer can not only serve as a conductive interface but also provide a dual-adsorption barrier to retain active material and inhibit the LiPSs migrating. More importantly, electrocatalytic Sn4P3 nanodots supported on acorn shell porous carbon (AS PC) within synergistic engineering layer effectively promote lithium ion diffusion, LiPSs conversion, Li2S2/Li2S deposition, and accelerate the electrochemical redox reaction and therefore curb the soluble LiPSs shutting behavior. As a result, enhanced Li-S battery performance is achieved with synergistic engineering layer, e.g., excellent cycling stability over 900 cycles at 1.0C with a low capacity decay of 0.046% per cycle, a good rate performance, and a high areal capacity of 8.7 mAh cm(-2) under lean electrolyte conditions.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries [J].
Abbas, Syed Ali ;
Ding, Jiang ;
Wu, Sheng Hui ;
Fang, Jason ;
Boopathi, Karunakara Moorthy ;
Mohapatra, Anisha ;
Lee, Li Wei ;
Wang, Pen-Cheng ;
Chang, Chien-Cheng ;
Chu, Chih Wei .
ACS NANO, 2017, 11 (12) :12436-12445
[2]   Heteroatoms-Doped Porous Carbon Derived from Tuna Bone for High Performance Li-S Batteries [J].
Ai, Fei ;
Liu, Naiqiang ;
Wang, Weikun ;
Wang, Anbang ;
Wang, Feng ;
Zhang, Hao ;
Huang, Yaqin .
ELECTROCHIMICA ACTA, 2017, 258 :80-89
[3]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[4]  
[Anonymous], 2019, ANGEW CHEM INT ED
[5]   Stabilizing Li-S Battery Through Multilayer Encapsulation of Sulfur [J].
Ansari, Younes ;
Zhang, Sonia ;
Wen, Bohua ;
Fan, Frank ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2019, 9 (01)
[6]   Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes [J].
Balogun, Muhammad-Sadeeq ;
Yang, Hao ;
Luo, Yang ;
Qiu, Weitao ;
Huang, Yongchao ;
Liu, Zhao-Qing ;
Tong, Yexiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1859-1869
[7]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[8]   Separator Modified by Cobalt-Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for High-Energy-Density Lithium-Sulfur Batteries [J].
Cheng, Zhibin ;
Pan, Hui ;
Chen, Jinqing ;
Meng, Xueping ;
Wang, Ruihu .
ADVANCED ENERGY MATERIALS, 2019, 9 (32)
[9]   Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density [J].
Cheng, Zhibin ;
Xiao, Zhubing ;
Pan, Hui ;
Wang, Shiqing ;
Wang, Ruihu .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[10]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985