Laplace transform-homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals

被引:15
作者
Filobello-Nino, U. [1 ]
Vazquez-Leal, H. [1 ]
Khan, Y. [2 ]
Perez-Sesma, A. [1 ]
Diaz-Sanchez, A. [3 ]
Jimenez-Fernandez, V. M. [1 ]
Herrera-May, A. [4 ]
Pereyra-Diaz, D. [1 ]
Mendez-Perez, J. M. [1 ]
Sanchez-Orea, J. [1 ]
机构
[1] Univ Veracruz, Elect Instrumentat & Atmospher Sci Sch, Xalapa 91000, Veracruz, Mexico
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Natl Inst Astrophys Opt & Elect, Puebla 72840, Mexico
[4] Univ Veracruz, Micro & Nanotechnol Res Ctr, Boca Del Rio 94292, Veracruz, Mexico
关键词
Homotopy perturbation method; Nonlinear differential equation; Approximate solutions; Laplace transform; Laplace transform homotopy perturbation method; Dirichlet; Boundary condition; Neumann boundary condition; Gelfand's differential equation; CONVERGENCE; EQUATION;
D O I
10.1007/s40314-013-0073-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article proposes Laplace transform-homotopy perturbation method (LT-HPM) to solve nonlinear differential equations with Dirichlet, mixed, and Neumann boundary conditions. After comparing figures between approximate and exact solutions, we will see that the proposed solutions are of high accuracy and, therefore, that LT-HPM is extremely efficient.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 41 条
[11]  
[Anonymous], ASIAN J MATH STAT
[12]  
[Anonymous], 2012, TRENDS APPL SCI RES
[13]  
[Anonymous], 2011, ASIAN J MATH STAT
[14]   Approximate solutions for the generalized KdV-Burgers' equation by He's variational iteration method [J].
Assas, Laila M. B. .
PHYSICA SCRIPTA, 2007, 76 (02) :161-164
[15]   On the order of convergence of Adomian method [J].
Babolian, E ;
Biazar, J .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 130 (2-3) :383-387
[16]   Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method [J].
Belendez, A. ;
Pascual, C. ;
Alvarez, M. L. ;
Mendez, D. I. ;
Yebra, M. S. ;
Hernandez, A. .
PHYSICA SCRIPTA, 2009, 79 (01)
[17]   Convergence of the homotopy perturbation method for partial differential equations [J].
Biazar, J. ;
Ghazvini, H. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2633-2640
[18]   Study of convergence of homotopy perturbation method for systems of partial differential equations [J].
Biazar, Jafar ;
Aminikhah, Hossein .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2221-2230
[19]  
Chowdhury Sazzad Hossien, 2011, Journal of Applied Sciences, V11, P1416, DOI 10.3923/jas.2011.1416.1420
[20]  
El-Shahed M, 2005, INT J NONLIN SCI NUM, V6, P163