Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

被引:66
|
作者
Mohamed, A. -A. H. [1 ,2 ]
Kolb, J. F. [3 ]
Schoenbach, K. H. [3 ]
机构
[1] Taibah Univ, Dept Phys, Fac Sci, Almadinah Almunawwarah, Saudi Arabia
[2] Beni Suef Univ, Dept Phys, Fac Sci, Bani Suwayf, Egypt
[3] Old Dominion Univ, Frank Reidy Res Ctr Bioelect, Norfolk, VA 23510 USA
关键词
CURRENT GLOW-DISCHARGES; PLASMA; INJECTION; TORCH;
D O I
10.1140/epjd/e2010-00220-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 mu m thick molybdenum electrodes separated by a 200 mu m thick alumina layer, is 150 to 450 mu m in diameter in the cathode and has an opening of 100 to 300 mu m in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between similar to 2000 K and similar to 1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [21] Tuning characteristics of coaxial microwave plasma source operated with argon, nitrogen and methane at atmospheric pressure
    Hrycak, Bartosz
    Czylkowski, Dariusz
    Jasinski, Mariusz
    Mizeraczyk, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (11B): : 310 - 312
  • [22] Tuning characteristics of cylindrical microwave plasma source operated with argon, nitrogen and methane at atmospheric pressure
    Hrycak, Bartosz
    Jasinski, Mariusz
    Mizeraczyk, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 98 - 101
  • [23] Chromium Ion Redox Processes in Aqueous Solution during Treatment with Atmospheric Pressure Direct-Current Discharge in Oxygen
    Shutov, D. A.
    Sungurova, A., V
    Manukyan, A. S.
    Izvekova, A. A.
    Rybkin, V. V.
    HIGH ENERGY CHEMISTRY, 2019, 53 (05) : 385 - 389
  • [25] Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release
    Wang, Qiaobo
    Pei, Shufeng
    Song, Haojun
    Huang, Lijuan
    Zhang, Liang
    Tang, Junshi
    Guan, Wenlong
    Ren, Shaoran
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 197
  • [26] Polystyrene Surface Modification for Localized Cell Culture Using a Capillary Dielectric Barrier Discharge Atmospheric-Pressure Microplasma Jet
    Doherty, Kyle G.
    Oh, Jun-Seok
    Unsworth, Paul
    Bowfield, Andrew
    Sheridan, Carl M.
    Weightman, Peter
    Bradley, James W.
    Williams, Rachel L.
    PLASMA PROCESSES AND POLYMERS, 2013, 10 (11) : 978 - 989
  • [27] Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet
    Prevosto, L.
    Kelly, H.
    Mancinelli, B. R.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
  • [28] Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet
    Tian, Ye
    Sun, Peng
    Wu, Haiyan
    Bai, Na
    Wang, Ruixue
    Zhu, Weidong
    Zhang, Jue
    Liu, Fuxiang
    JOURNAL OF BIOMEDICAL RESEARCH, 2010, 24 (04): : 264 - 269
  • [29] Methane reforming to valuable products by an atmospheric pressure direct current discharge
    SriBala, Gorugantu
    Michiels, Dries
    Leys, Christophe
    Van Geem, Kevin M.
    Marin, Guy B.
    Nikiforov, Anton
    JOURNAL OF CLEANER PRODUCTION, 2019, 209 : 655 - 664
  • [30] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
    Yin, Zeng-Qian
    Wang, Yan
    Zhang, Pan-Pan
    Zhang, Qi
    Li, Xue-Chen
    CHINESE PHYSICS B, 2016, 25 (12)