UNSUPERVISED DETECTION OF LOCAL ERRORS IN IMAGE REGISTRATION

被引:0
|
作者
Vishnevskiy, Valeriy [1 ]
Gass, Tobias [1 ]
Szekely, Gabor [1 ]
Tanner, Christine [1 ]
Goksel, Orcun [1 ]
机构
[1] ETH, Comp Vis Lab, Zurich, Switzerland
来源
2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2015年
关键词
Registration accuracy; consistency; registration circuits; error detection; UNCERTAINTY;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Image registration is used extensively in medical imaging. Visual assessment of its quality is time consuming and not necessarily accurate. Automatic estimation of registration accuracy is desired for many clinical applications. Current methods rely on learning a relationship between image features and registration error. In this paper we propose an unsupervised method for the detection of local registration errors of a user- specified magnitude. Our method analyses the consistency error of registration circuits, does not require image intensity information, and achieves an error detection accuracy of 82% for 3D liver MRI registration of breathing phases.
引用
收藏
页码:841 / 844
页数:4
相关论文
共 50 条
  • [1] Multimodal Remote Sensing Image Registration With Accuracy Estimation at Local and Global Scales
    Uss, Mikhail L.
    Vozel, Benoit
    Lukin, Vladimir V.
    Chehdi, Kacem
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11): : 6587 - 6605
  • [2] PULPo: Probabilistic Unsupervised Laplacian Pyramid Registration
    Siegert, Leonard
    Fischer, Paul
    Heinrich, Mattias P.
    Baumgartner, Christian F.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II, 2024, 15002 : 717 - 727
  • [3] Symmetric image registration
    Rogelj, P
    Kovacic, S
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 334 - 343
  • [4] Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces
    Dalca, Adrian V.
    Balakrishnan, Guha
    Guttag, John
    Sabuncu, Mert R.
    MEDICAL IMAGE ANALYSIS, 2019, 57 : 226 - 236
  • [5] A New Local Optimal Spline Wavelet for Image Edge Detection
    Zhou, Dujuan
    Yuan, Zizhao
    Cai, Zhanchuan
    Zhu, Defu
    Shen, Xiaojing
    MATHEMATICS, 2025, 13 (01)
  • [6] Detection of vessel bifurcations in CT scans for automatic objective assessment of deformable image registration accuracy
    Cazoulat, Guillaume
    Anderson, Brian M.
    McCulloch, Molly M.
    Rigaud, Bastien
    Koay, Eugene J.
    Brock, Kristy K.
    MEDICAL PHYSICS, 2021, 48 (10) : 5935 - 5946
  • [7] Quantitative error prediction of medical image registration using regression forests
    Sokooti, Hessam
    Saygili, Gorkem
    Glocker, Ben
    Lelieveldt, Boudewijn P. F.
    Staring, Marius
    MEDICAL IMAGE ANALYSIS, 2019, 56 : 110 - 121
  • [8] IMAGE REGISTRATION USING UNCERTAINTY COEFFICIENTS
    Melbourne, A.
    Hawkes, D.
    Atkinson, D.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 951 - 954
  • [9] Image registration based on evidential reasoning
    Han, Deqiang
    Dezert, Jean
    Li, Shicheng
    Han, Chongzhao
    Yang, Yi
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1143 - 1150
  • [10] Unsupervised knowledge-transfer for learned image reconstruction*
    Barbano, Riccardo
    Kereta, Zeljko
    Hauptmann, Andreas
    Arridge, Simon R.
    Jin, Bangti
    INVERSE PROBLEMS, 2022, 38 (10)