Backward uniqueness for parabolic equations

被引:148
作者
Escauriaza, L [1 ]
Seregin, G
Sverak, V
机构
[1] EHU, UPV, Dept Matemat, Bilbao 48080, Spain
[2] VA Steklov Math Inst, St Petersburg 191011, Russia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1007/s00205-003-0263-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a function u satisfying \partial derivative(t) + Deltau\ less than or equal to M (\u\ + \delu\), \u(x, t)\ less than or equal to Me-M\x\2 in (R-n \B-R) x [0, T] and u(x, 0) = 0 for x is an element of R-n \ B-R must vanish identically in R-n\B-R x [0, T].
引用
收藏
页码:147 / 157
页数:11
相关论文
共 21 条