Backward uniqueness for parabolic equations

被引:151
作者
Escauriaza, L [1 ]
Seregin, G
Sverak, V
机构
[1] EHU, UPV, Dept Matemat, Bilbao 48080, Spain
[2] VA Steklov Math Inst, St Petersburg 191011, Russia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1007/s00205-003-0263-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a function u satisfying \partial derivative(t) + Deltau\ less than or equal to M (\u\ + \delu\), \u(x, t)\ less than or equal to Me-M\x\2 in (R-n \B-R) x [0, T] and u(x, 0) = 0 for x is an element of R-n \ B-R must vanish identically in R-n\B-R x [0, T].
引用
收藏
页码:147 / 157
页数:11
相关论文
共 21 条
[1]  
AHLFORS LV, 1966, COMPELX ANAL
[2]   A strong unique continuation theorem for parabolic equations [J].
Chen, XY .
MATHEMATISCHE ANNALEN, 1998, 311 (04) :603-630
[3]  
Escauriaza L, 2001, INDIANA U MATH J, V50, P1149
[4]   Carleman inequalities and the heat operator [J].
Escauriaza, L .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (01) :113-127
[5]  
ESCAURIAZA L, IN PRESS UNIQUE CONT
[6]  
FERNANDEZ FJ, IN PRESS UNIQUE CONT, V2
[7]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121
[8]  
Hormander, 1963, GRUNDL MATH WISS, V116
[9]  
HORMANDER L, 1983, COMMUN PART DIFF EQ, V8, P21
[10]   FUNDAMENTAL SOLUTION FOR HEAT EQUATION WHICH IS SUPPORTED IN A STRIP [J].
JONES, BF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (02) :314-324