共 62 条
Sunlight-Sensitive Plasmonic Nanostructured Composites as Photocatalytic Coating with Antibacterial Properties
被引:54
作者:
Marin-Caba, Laura
[1
,2
]
Bodelon, Gustavo
[1
,2
]
Negrin-Montecelo, Yoel
[1
,2
]
Correa-Duarte, Miguel A.
[1
,2
,3
]
机构:
[1] Univ Vigo, Dept Quim Fis, CINBIO, Vigo 36310, Spain
[2] Galicia Hlth Res Inst IIS Galicia Sur, Vigo 36310, Spain
[3] Biomed Res Networking Ctr Mental Hlth CIBERSAM, Vigo 36310, Spain
关键词:
antimicrobial;
biofilms;
nanocomposites;
phototoxicity;
plasmonics;
reactive oxygen species;
GREEN FLUORESCENT PROTEIN;
OXIDATIVE STRESS;
PHOTODYNAMIC THERAPY;
LIGHT;
NANOPARTICLES;
DAMAGE;
MECHANISMS;
GROWTH;
MODEL;
SOLAR;
D O I:
10.1002/adfm.202105807
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Infections caused by microorganisms are a global public health problem that continually demands new antimicrobial strategies. The generation of reactive oxygen species (ROS) by photocatalytic materials is an attractive approach to combat microbes. Along these lines, titanium dioxide (TiO2) constitutes an outstanding light-driven ROS generator. However, the wide bandgap of this semiconductor limits its use to the ultraviolet range of the spectral region. Herein, nanostructured materials composed of TiO2 nanoparticles and plasmonic gold nanorods (AuNRs) are presented for the photoinactivation of bacteria by means of sunlight irradiation, aiming to extend the photocatalytic action of the nanocomposite to the visible and near-infrared ranges. It is shown that, upon simulated sunlight irradiation, the different composites as coating films show photodegradation of rhodamine B, ROS production, photocatalytic inactivation of protein function in bacterial biofilms, and strong antimicrobial activity. This approach involving AuNRs/TiO2 photocatalytic composites may pave the way for the fabrication of visible light-responsive surfaces with antimicrobial activity.
引用
收藏
页数:10
相关论文