The time-dependent deformation of carbon fiber-reinforced melt-infiltrated silicon carbide ceramic matrix composites:: Stress-rupture and stress-relaxation behavior in air at 1000°C
被引:1
|
作者:
Lara-Curzio, E
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Mech Characterizat & Anal Grp, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, Mech Characterizat & Anal Grp, Oak Ridge, TN 37831 USA
Lara-Curzio, E
[1
]
Singh, M
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Mech Characterizat & Anal Grp, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, Mech Characterizat & Anal Grp, Oak Ridge, TN 37831 USA
Singh, M
[1
]
机构:
[1] Oak Ridge Natl Lab, Mech Characterizat & Anal Grp, Oak Ridge, TN 37831 USA
来源:
MECHANICAL, THERMAL AND ENVIRONMENTAL TESTING AND PERFORMANCE OF CERAMIC COMPOSITES AND COMPONENTS
|
2000年
/
1392卷
The stress-rupture and stress-relaxation behavior of carbon fiber-reinforced melt-infiltrated silicon carbide composites was investigated in ambient air at 1000 degreesC. It was found that the compliance of the material increases continuously with time when subjected either to a constant composite stress or strain in air at 1000 degreesC. The changes in compliance are explained based on the oxidation of the fiber coating, and on the oxidation, loss of cross-sectional area and rupture: of the reinforcing fibers. In the case of stress-rupture, the load previously carried by failed fibers is redistributed to their surviving neighboring fibers inducing further fiber failure. During stress-relaxation, fiber failure is reflected directly on the reduction of the load carried by the composite. By monitoring the expansion of the specimens during heating, prior to the application of the stress or strain, it was possible to determine the liner coefficients of thermal expansion of the material between 200 degreesC and 1000 degreesC.