Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks

被引:40
作者
Aljohani, Khalil [1 ]
Turki, Turki [1 ]
机构
[1] King Abdulaziz Univ, Dept Comp Sci, Jeddah 21589, Saudi Arabia
关键词
deep learning; convolutional neural networks; dermatology; skin cancer; melanoma medical images;
D O I
10.3390/ai3020029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Melanoma skin cancer is one of the most dangerous types of skin cancer, which, if not diagnosed early, may lead to death. Therefore, an accurate diagnosis is needed to detect melanoma. Traditionally, a dermatologist utilizes a microscope to inspect and then provide a report on a biopsy for diagnosis; however, this diagnosis process is not easy and requires experience. Hence, there is a need to facilitate the diagnosis process while still yielding an accurate diagnosis. For this purpose, artificial intelligence techniques can assist the dermatologist in carrying out diagnosis. In this study, we considered the detection of melanoma through deep learning based on cutaneous image processing. For this purpose, we tested several convolutional neural network (CNN) architectures, including DenseNet201, MobileNetV2, ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, and GoogleNet, and evaluated the associated deep learning models on graphical processing units (GPUs). A dataset consisting of 7146 images was processed using these models, and we compared the obtained results. The experimental results showed that GoogleNet can obtain the highest performance accuracy on both the training and test sets (74.91% and 76.08%, respectively).
引用
收藏
页码:512 / 525
页数:14
相关论文
共 51 条
[1]   DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network [J].
Abbas, Qaisar ;
Celebi, M. Emre .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (16) :23559-23580
[2]   Melanoma and Nevus Skin Lesion Classification Using Handcraft and Deep Learning Feature Fusion via Mutual Information Measures [J].
Almaraz-Damian, Jose-Agustin ;
Ponomaryov, Volodymyr ;
Sadovnychiy, Sergiy ;
Castillejos-Fernandez, Heydy .
ENTROPY, 2020, 22 (04)
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]  
Amomsamankul S., 2019, INT J SIMUL SYST SCI, P1, DOI [10.5013/ij ssst.a.20 .04.08, DOI 10.5013/IJSSST.A.20.04.08]
[5]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[6]   Blue-black rule: a simple dermoscopic clue to recognize pigmented nodular melanoma [J].
Argenziano, G. ;
Longo, C. ;
Cameron, A. ;
Cavicchini, S. ;
Gourhant, J. -Y. ;
Lallas, A. ;
McColl, I. ;
Rosendahl, C. ;
Thomas, L. ;
Tiodorovic-Zivkovic, D. ;
Zaballos, P. ;
Zalaudek, I. .
BRITISH JOURNAL OF DERMATOLOGY, 2011, 165 (06) :1251-1255
[7]  
Banka A.A., 2018, IRAQI J ELECT ELECT, V14, P127, DOI [10.37917/ijeee.14.2.5, DOI 10.37917/IJEEE.14.2.5]
[8]   Towards Automated Melanoma Detection with Deep Learning: Data Purification and Augmentation [J].
Bisla, Devansh ;
Choromanska, Anna ;
Berman, Russell S. ;
Stein, Jennifer A. ;
Polsky, David .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :2720-2728
[9]   Deep neural networks are superior to dermatologists in melanoma image classification [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Berking, Carola ;
Haferkamp, Sebastian ;
Hauschild, Axel ;
Weichenthal, Michael ;
Klode, Joachim ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
von Kalle, Christof ;
Froehling, Stefan ;
Schilling, Bastian ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 119 :11-17
[10]   Deep learning: definition and perspectives for thoracic imaging [J].
Chassagnon, Guillaume ;
Vakalopolou, Maria ;
Paragios, Nikos ;
Revel, Marie-Pierre .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2021-2030