The search for oil and gas in the Nigerian inland basins and efficacy of the unconventional oil shale in hydrocarbon generation have necessitated the palynofacies characterization, thermal maturation and source rock evaluation of the Imo Formation, updip Niger Delta basin to determine its palynofacies constituents and oil shale potential. The standard acid maceration technique, palynofacies description as well as palynomorph colour index chart systematically compared to thermal alteration index and vitrinite reflectance index values were utilized for the study. The palynofacies components of the Imo Formation is dominant of yellow and brown amorphous organic matter, marine taxa, opaque particles, with few dark brown structured phytoclasts and terrestrial microflora. The source rock content is interpreted as Kerogen Type II - oil prone with abundant marine palynomorphs, amorphous organic matter and few terrestrial microfossils. The spore/pollen colour of the strata is light brown signifying mature and oil generation zone. This correlates to thermal alteration index (TAI) 2+ to 3 and vitrinite reflectance index (%R-0) values of 0.5% to 1.0%. The abundance of the amorphous organic matter of marine origin suggests good source rock which indicates good oil shale prospects. The oil shale prospects of the Imo Formation in the study area are hindered by the low abundance of the palynofacies associations. Field evidence indicate that the grey to slightly light grey shales in hand specimen, as against black carbonaceous shales rich in organic matter suggests that the environmental conditions affected the quality of the organic kerogen. The oil yields may be compensated by the great volume of marine shale deposited in the formation and the abundance of amorphous organic matter of marine origin which is known to be an excellent indicator of oil. The palynofacies model enhances the understanding of palynofacies events and oil shale quality which can be tied to the development of unconventional oil shale, oil fields and subsequent exploration drive in the area.