Adaptive Mixture Modeling Metropolis Methods for Bayesian Analysis of Nonlinear State-Space Models

被引:10
|
作者
Niemi, Jarad [1 ]
West, Mike [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bayesian computation; Forward filtering; backward sampling; Regenerating mixture procedure; Smoothing in state-space models; Systems biology; SEQUENTIAL INFERENCE; GENE;
D O I
10.1198/jcgs.2010.08117
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a strategy for Markov chain Monte Carlo analysis of nonlinear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the nonlinearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
引用
收藏
页码:260 / 280
页数:21
相关论文
共 50 条
  • [1] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [2] Bayesian identification of state-space models via adaptive thermostats
    Umenberger, Jack
    Schon, Thomas B.
    Lindsten, Fredrik
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7382 - 7388
  • [3] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [4] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [5] AN ADAPTIVE NONLINEAR STATE-SPACE MODEL APPLIED TO MODELING EPIDEMICS
    JONES, RH
    NICHOLLS, DF
    STATISTICA SINICA, 1991, 1 (02) : 389 - 400
  • [6] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722
  • [7] Bayesian Inference for State-Space Models With Student-t Mixture Distributions
    Zhang, Tianyu
    Zhao, Shunyi
    Luan, Xiaoli
    Liu, Fei
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4435 - 4445
  • [8] Bayesian computational methods for state-space models with application to SIR model
    Kim, Jaeoh
    Jo, Seongil
    Lee, Kyoungjae
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1207 - 1223
  • [9] BAYESIAN FILTERING FOR NONLINEAR STATE-SPACE MODELS IN SYMMETRIC α-STABLE MEASUREMENT NOISE
    Vila-Valls, Jordi
    Fernandez-Prades, Carles
    Closas, Pau
    Fernandez-Rubio, Juan A.
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 674 - 678
  • [10] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811