Sharp criteria for the nonlinear Schrodinger equation with combined nonlinearities of power-type and Hartree-type

被引:8
作者
Leng, Lihui [1 ]
Li, Xiaoguang [2 ]
Zheng, Pengshe [1 ]
机构
[1] Xihua Univ, Coll Sci, Chengdu, Sichuan, Peoples R China
[2] Sichuan Normal Univ, Sichuan Prov Key Lab Comp Software, Chengdu, Sichuan, Peoples R China
关键词
Nonlinear Schrodinger equation; Hartree-type; sharp criteria; blow-up solution; global existence; BLOW-UP; CAUCHY-PROBLEM;
D O I
10.1080/00036811.2016.1248424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Cauchy problem of the nonlinear Schrodinger equation with Combined Nonlinearities. By using the generalized Gagliardo-Nirenberg inequalities, when p > 4/n and for all gamma : 2 <= gamma < 4, we obtain a sharp threshold for global existence and blow-up of solutions.
引用
收藏
页码:2846 / 2851
页数:6
相关论文
共 50 条
[41]   Global existence and blow up of the solution for nonlinear Klein-Gordon equation with general power-type nonlinearities at three initial energy levels [J].
Luo, Yongbing ;
Yang, Yanbing ;
Ahmed, Md Salik ;
Yu, Tao ;
Zhang, Mingyou ;
Wang, Ligang ;
Xu, Huichao .
APPLIED NUMERICAL MATHEMATICS, 2019, 141 :102-123
[42]   Variational Solution of Stochastic Schrodinger Equations With Power-Type Nonlinearity [J].
Keller, Diana ;
Lisei, Hannelore .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (04) :653-672
[43]   Ground state solutions for a class of Schrodinger-Poisson systems with Hartree-type nonlinearity [J].
Xie, Weihong ;
Chen, Haibo ;
Wu, Tsung-Fang .
APPLICABLE ANALYSIS, 2021, 100 (13) :2777-2803
[44]   Orbital stability of standing waves of a class of fractional Schrodinger equations with Hartree-type nonlinearity [J].
Cho, Yonggeun ;
Fall, Mouhamed M. ;
Hajaiej, Hichem ;
Markowich, Peter A. ;
Trabelsi, Saber .
ANALYSIS AND APPLICATIONS, 2017, 15 (05) :699-729
[45]   Finite and Infinte Time Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities [J].
Dimova, Milena ;
Kolkovska, Natalia ;
Kutev, Nikolai .
MATHEMATICS, 2025, 13 (02)
[46]   Global Small Data Solutions for an Evolution Equation with Structural Damping and Hartree-Type Nonlinearity [J].
D'Abbicco, Marcello .
ANALYSIS, APPLICATIONS, AND COMPUTATIONS, 2023, :563-575
[47]   Nonexistence of global solutions to Klein-Gordon equations with variable coefficients power-type nonlinearities [J].
Kolkovska, Natalia ;
Dimova, Milena ;
Kutev, Nikolai .
OPEN MATHEMATICS, 2023, 21 (01)
[48]   New type of solutions for the nonlinear Schrodinger equation in RN [J].
Duan, Lipeng ;
Musso, Monica .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 :479-504
[49]   A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation [J].
Cong, Hongzi ;
Mi, Lufang ;
Wang, Peizhen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) :5207-5256
[50]   A NEKHOROSHEV-TYPE THEOREM FOR THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS [J].
Faou, Erwan ;
Grebert, Benoit .
ANALYSIS & PDE, 2013, 6 (06) :1243-1262