Period three implications for expansive maps in RN

被引:4
作者
Andres, J [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal & Appl Math, Olomouc 77900, Czech Republic
关键词
Li-Yorke's theorem; multidimensional version; periodic points; period three implications; expansive maps;
D O I
10.1080/1023619031000114314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multidimensional version of the Li-Yorke cycle coexisting theorem [Li, T.-Y. and Yorke, J.A. "Period three implies chaos", Am. Math. Monthly , 82 , 985-992] is established for certain (e.g. expansive) maps. The related fixed- and periodic-point theorems are developed in R n . Implications of 3-orbits are discussed.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 28 条
[1]  
Alligood K.T., 1997, CHAOS INTRO DYNAMICA, DOI 10.1063/1.882006
[2]   On a multivalued version of the Sharkovskii theorem and its application to differential inclusions [J].
Andres, J ;
Fiser, J ;
Jüttner, L .
SET-VALUED ANALYSIS, 2002, 10 (01) :1-14
[3]   Period three plays a negative role in a multivalued version of Sharkovskii's theorem [J].
Andres, J ;
Jüttner, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (06) :1101-1104
[4]   Nielsen number, Artin braids, Poincare operators and multiple nonlinear oscillations [J].
Andres, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) :1017-1028
[5]  
ANDRES J, UNPUB MULTIVALUED VE, V2
[6]  
BAE JS, 1990, B KOREAN MATH SOC, V27, P127
[7]  
Demin A. I., 1996, VESTNIK MOSK U 1, V3, P84
[8]  
FRANKS J, 1993, CONT MATH, V152, P69
[9]  
GAMBAUDO JM, 1990, CR ACAD SCI I-MATH, V310, P291
[10]  
GORNIEWICZ L, 1999, TOPLOGICAL FIXED POI