Discrete Time Crystals

被引:211
作者
Else, Dominic V. [1 ]
Monroe, Christopher [2 ,3 ]
Nayak, Chetan [4 ,5 ]
Yao, Norman Y. [6 ,7 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Maryland, Dept Phys, Joint Quantum Inst, Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Microsoft Quantum, Stn Q, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020 | 2020年 / 11卷
关键词
spontaneous symmetry breaking; many-body localization; isolated quantum many-body systems; time-translation symmetry; Floquet systems; SUBHARMONIC SHAPIRO STEPS; MANY-BODY LOCALIZATION; PERIODICALLY DRIVEN; STATISTICAL-MECHANICS; QUANTUM; DYNAMICS; THERMALIZATION; SPIN; PRETHERMALIZATION; GENERATION;
D O I
10.1146/annurev-conmatphys-031119-050658
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Experimental advances have allowed for the exploration of nearly isolated quantum many-body systems whose coupling to an external bath is very weak. A particularly interesting class of such systems is those that do not thermalize under their own isolated quantum dynamics. In this review, we highlight the possibility for such systems to exhibit new nonequilibrium phases of matter. In particular, we focus on discrete time crystals, which are many-body phases of matter characterized by a spontaneously broken discrete time-translation symmetry. We give a definition of discrete time crystals from several points of view, emphasizing that they are a nonequilibrium phenomenon that is stabilized by many-body interactions, with no analog in noninteracting systems. We explain the theory behind several proposed models of discrete time crystals, and compare several recent realizations, in different experimental contexts.
引用
收藏
页码:467 / 499
页数:33
相关论文
共 149 条
[1]   A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems [J].
Abanin, Dmitry ;
De Roeck, Wojciech ;
Ho, Wen Wei ;
Huveneers, Francois .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (03) :809-827
[2]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[3]   Theory of many-body localization in periodically driven systems [J].
Abanin, Dmitry A. ;
De Roeck, Wojciech ;
Huveneers, Francois .
ANNALS OF PHYSICS, 2016, 372 :1-11
[4]   Exponentially Slow Heating in Periodically Driven Many-Body Systems [J].
Abanin, Dmitry A. ;
De Roeck, Wojciech ;
Huveneers, Francois .
PHYSICAL REVIEW LETTERS, 2015, 115 (25)
[5]  
[Anonymous], ARXIV170801620
[6]   Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal [J].
Autti, S. ;
Eltsov, V. B. ;
Volovik, G. E. .
PHYSICAL REVIEW LETTERS, 2018, 120 (21)
[7]   Localization and topology protected quantum coherence at the edge of hot matter [J].
Bahri, Yasaman ;
Vosk, Ronen ;
Altman, Ehud ;
Vishwanath, Ashvin .
NATURE COMMUNICATIONS, 2015, 6
[8]   TEMPORAL-ORDER IN DIRTY DRIVEN PERIODIC MEDIA [J].
BALENTS, L ;
FISHER, MPA .
PHYSICAL REVIEW LETTERS, 1995, 75 (23) :4270-4273
[9]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[10]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226