Linear maps preserving idempotents of tensor products of matrices

被引:4
作者
Zheng, Baodong [1 ]
Xu, Jinli [1 ]
Fosner, Ajda [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Linear preserver; Tensor product; Idempotent;
D O I
10.1016/j.laa.2014.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let IF be a field of characteristic not 2 and M-n the algebra of all n x n matrices over IF. The aim of this paper is to characterize linear maps phi: M-m1...ml -> M-m1...ml such that phi(A(1) circle times . . . circle times A(l)) is an idempotent whenever A(1) circle times . . . circle times A(l) is an idempotent. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 19 条
  • [1] Bourbaki Nicolas, 1989, Commutative Algebra
  • [2] Bresar M., 2007, Functional identities
  • [3] LINEAR PRESERVERS ON POWERS OF MATRICES
    CHAN, GH
    LIM, MH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 : 615 - 626
  • [4] Dieudonne J., 1948, Archiv der Mathematik, V1, P282, DOI [10.1007/BF02038756, DOI 10.1007/BF02038756]
  • [5] Fosner A., 2013, LINEAR MULTILINEAR A
  • [6] Linear preservers and quantum information science
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (10) : 1377 - 1390
  • [7] Linear maps preserving numerical radius of tensor products of matrices
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 183 - 189
  • [8] LINEAR MAPS PRESERVING KY FAN NORMS AND SCHATTEN NORMS OF TENSOR PRODUCTS OF MATRICES
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 673 - 685
  • [9] The automorphism group of separable states in quantum information theory
    Friedland, Shmuel
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [10] Frobenius G., 1897, SITZ BER DTSCH AKAD, P994