Local Differential Privacy Is Equivalent to Contraction of an f-Divergence

被引:14
作者
Asoodeh, Shahab [1 ]
Aliakbarpour, Maryam [2 ]
Calmon, Flavio P. [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2021年
关键词
INFORMATION; NOISE; COEFFICIENTS; RATES;
D O I
10.1109/ISIT45174.2021.9517999
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the local differential privacy (LDP) guarantees of a randomized privacy mechanism via its contraction properties. We first show that LDP constraints can be equivalently cast in terms of the contraction coefficient of the E-gamma-divergence. We then use this equivalent formula to express LDP guarantees of privacy mechanisms in terms of contraction coefficients of arbitrary f-divergences. When combined with standard estimation-theoretic tools (such as Le Cam's and Fano's converse methods), this result allows us to study the trade-off between privacy and utility in several testing and minimax and Bayesian estimation problems.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 47 条
[1]   Inference Under Information Constraints I: Lower Bounds From Chi-Square Contraction [J].
Acharya, Jayadev ;
Canonne, Clement L. ;
Tyagi, Himanshu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) :7835-7855
[2]   SPREADING OF SETS IN PRODUCT SPACES AND HYPERCONTRACTION OF MARKOV OPERATOR [J].
AHLSWEDE, R ;
GACS, P .
ANNALS OF PROBABILITY, 1976, 4 (06) :925-939
[3]  
ALI SM, 1966, J ROY STAT SOC B, V28, P131
[4]  
Anantharam V, 2014, IEEE INT SYMP INFO, P3022, DOI 10.1109/ISIT.2014.6875389
[5]  
[Anonymous], 2012, ELEMENTS INFORM THEO
[6]  
Asoodeh S., LOCAL DIFFERENTIAL P, P2021
[7]  
Asoodeh S., 2020, ARXIV201211035
[8]  
Asoodeh S., J SELECTED AREAS INF, V2021
[9]  
Balle B, 2019, ADV NEUR IN, V32
[10]  
Balle Borja, 2018, ADV NEUR IN, P6277