An overview: Facet-dependent metal oxide semiconductor gas sensors

被引:328
作者
Gao, Xing [1 ]
Zhang, Tong [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal oxide semiconductor; Gas sensors; High-energy facets; Atomic arrangement; Facet-dependent; Wurtzite; Rutile; Anatase; Hematite; ZnO; SnO2; TiO2; alpha-Fe2O3; NiO; Cu2O; PEROVSKITE SOLAR-CELLS; HIGH-ENERGY FACETS; TITANIUM-DIOXIDE NANOMATERIALS; ACETONE SENSING PERFORMANCES; HIGH-PRESSURE PHASE; EXPOSED; 0001; FACET; ANATASE TIO2; TIN DIOXIDE; CONTROLLABLE SYNTHESIS; FACILE SYNTHESIS;
D O I
10.1016/j.snb.2018.08.129
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metal oxide semiconductor (MOS) gas sensors possess extensive applications due to their high sensitivity, low cost, and simplicity. To boost their excellent sensing performance and meet the growing demand for applications, a series of strategies have been developed, such as the surface morphology engineering and function manipulation. Recently, the controlled morphology with exposed high-energy facets and the facet-dependent sensing properties have attracted much attention. Because of its abundant unsaturated active sites, the crystal planes with high surface energy usually serve as promising platform for gas sensing. After a lot of survey of literature, the authors provide a review of recent efforts on engineering crystal structures with exposed highenergy facets of MOS nanomaterials and their improved gas-sensitive performance, emphasis on six kinds of common gas-sensitive MOS including ZnO, SnO2, TiO2, alpha-Fe2O3, NiO and Cu2O. Also, the relationship between dangling bonds density and gas-sensing properties has been systematically discussed and used as one significant factor to evaluate superior sensing surface of MOS. According to the research and calculation, surface engineering by selectively exposing high-energy facets provides an effective way to obtain MOS gas-sensitive materials with superior performance. The understanding of the facet-dependent properties of MOS will assist in and guide the fabrication of more excellent gas sensors in the future.
引用
收藏
页码:604 / 633
页数:30
相关论文
共 206 条
[1]   Microstructural, optical and ethanol sensing properties of sprayed Li-doped Mn3O4 thin films [J].
Amara, M. A. ;
Larbi, T. ;
Labidi, A. ;
Karyaoui, M. ;
Ouni, B. ;
Amlouk, M. .
MATERIALS RESEARCH BULLETIN, 2016, 75 :217-223
[2]   Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review [J].
Arafat, M. M. ;
Dinan, B. ;
Akbar, Sheikh A. ;
Haseeb, A. S. M. A. .
SENSORS, 2012, 12 (06) :7207-7258
[3]   Electronic and optical properties of anatase TiO2 [J].
Asahi, R ;
Taga, Y ;
Mannstadt, W ;
Freeman, AJ .
PHYSICAL REVIEW B, 2000, 61 (11) :7459-7465
[4]   Review of zincblende ZnO: Stability of metastable ZnO phases [J].
Ashrafi, A. ;
Jagadish, C. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[5]   Titanium Dioxide Nanomaterials for Sensor Applications [J].
Bai, Jing ;
Zhou, Baoxue .
CHEMICAL REVIEWS, 2014, 114 (19) :10131-10176
[6]   Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2 [J].
Bai, Shouli ;
Hu, Jingwei ;
Li, Dianqing ;
Luo, Ruixian ;
Chen, Aifan ;
Liu, Chung Chiun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12288-12294
[7]   Crystal-Plane-Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals [J].
Bao, Huizhi ;
Zhang, Wenhua ;
Hua, Qing ;
Jiang, Zhiquan ;
Yang, Jinlong ;
Huang, Weixin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (51) :12294-12298
[8]   Nanostructured TiO2 films with 2 eV optical gaps [J].
Barborini, E ;
Conti, AM ;
Kholmanov, I ;
Piseri, P ;
Podestà, A ;
Milani, P ;
Cepek, C ;
Sakho, O ;
Macovez, R ;
Sancrotti, M .
ADVANCED MATERIALS, 2005, 17 (15) :1842-+
[9]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[10]   Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors [J].
Barsan, N. ;
Simion, C. ;
Heine, T. ;
Pokhrel, S. ;
Weimar, U. .
JOURNAL OF ELECTROCERAMICS, 2010, 25 (01) :11-19