SOLVABILIT OF FRACTIONAL ANALOGUES OF THE NEUMANN PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION

被引:0
作者
Turmetov, Batirkhan Kh. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Minist Educ & Sci Republ Kazakhstan, Alma Ata 050010, Kazakhstan
[2] Akhmet Yasawi Int Kazakh Turkish Univ, Dept Math, Turkistan 161200, Kazakhstan
关键词
Biharmonic equation; fractional derivative; Miller-Ross operator; Neumann problem; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; POLYHARMONIC EQUATION; DIRICHLET PROBLEM; OPERATOR; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the solvability of some boundary value problems for inhomogenous biharmobic equations. As a boundary operator we consider the differentiation operator of fractional order in the Miller-Ross sense. This problem is a generalization of the well known Neumann problems.
引用
收藏
页数:21
相关论文
共 33 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   Variational iteration method for solving biharmonic equations [J].
Ali, A. H. A. ;
Raslan, K. R. .
PHYSICS LETTERS A, 2007, 370 (5-6) :441-448
[3]   Solution of biharmonic equations with application to radar Imaging [J].
Andersson, LE ;
Elfving, T ;
Golub, GH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 94 (02) :153-180
[4]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[5]  
Begehr H., 2005, General Mathematics, V13, P65
[6]   ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION WITH A BOUNDARY OPERATOR OF A FRACTIONAL ORDER [J].
Berdyshev, A. S. ;
Cabada, A. ;
Turmetov, B. Kh. .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) :1695-1706
[7]   Some properties and applications of the integrodifferential operators of hadamard-marchaud type in the class of harmonic functions [J].
Berdyshev, A. S. ;
Turmetov, B. Kh. ;
Kadirkulov, B. J. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (04) :600-610
[8]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[9]   REGULARITY OF THE SOLUTIONS FOR NONLINEAR BIHARMONIC EQUATIONS IN RN [J].
Deng Yinbin ;
Li Yi .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) :1469-1480
[10]   SOME DIFFERENCE SCHEMES FOR BIHARMONIC EQUATION [J].
EHRLICH, LW ;
GUPTA, MM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) :773-790