Convergence of the iterated Aluthge transform sequence for diagonalizable matrices

被引:10
作者
Antezana, Jorge
Pujals, Enrique R.
Stojanoff, Dernetrio
机构
[1] Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IAM, RA-1033 Buenos Aires, DF, Argentina
[3] Inst Nacl Matemat Pura & Aplicada, Rio De Janeiro, Brazil
关键词
aluthge transform; stable manifold theorem; similarity orbit; polar decomposition;
D O I
10.1016/j.aim.2007.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an r x r complex matrix T, if T = U vertical bar T vertical bar is the polar decomposition of T, then, the Aluthge transform is defined by Delta(T) = vertical bar T vertical bar U-1/2 vertical bar T vertical bar(1/2). Let Delta(n)(T) denote the n-times iterated Aluthge transform of T, i.e. Delta(0)(T) = T and Delta(n)(T) = Delta(n)(T) = Delta(Delta(n-1)(T)), n is an element of N. We prove that the sequence [Delta(n)(T))(n is an element of N) converges for every r x r diagonalizable matrix T. We show that the limit Delta(infinity)(.) is a map of class C(infinity)on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r x r matrices with r different eigenvalues. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:255 / 278
页数:24
相关论文
共 15 条
[1]   ON P-HYPONORMAL OPERATORS FOR 0 LESS-THAN P LESS-THAN 1 [J].
ALUTHGE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (03) :307-315
[3]   The iterated Aluthge transforms of a 2-by-2 matrix converge [J].
Ando, T ;
Yamazaki, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 :299-309
[4]   λ-Aluthge transforms and Schatten ideals [J].
Antezana, J ;
Massey, P ;
Stojanoff, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 :177-199
[5]  
Bhatia R., 2013, MATRIX ANAL
[6]  
DYKEMA K, ALUTHGE TRANSFORMS C
[7]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[8]  
Jung IB, 2003, INTEGR EQUAT OPER TH, V45, P375
[9]  
Jung IB, 2000, INTEGR EQUAT OPER TH, V37, P437
[10]  
Kato T., 1984, PERTURBATION THEORY