Probabilistic self-organizing maps for qualitative data

被引:14
|
作者
Lopez-Rubio, Ezequiel [1 ]
机构
[1] Univ Malaga, Dept Comp Languages & Comp Sci, E-29071 Malaga, Spain
关键词
Self organizing maps; Categorical data; Qualitative data; Discrete probability distribution; Unsupervised learning; Stochastic approximation; NETWORK INTRUSION DETECTION; MULTIVARIATE-BERNOULLI; CATEGORICAL-DATA; NEURAL-NETWORKS; MISSING VALUES; LATENT CLASS; MODELS; DISTRIBUTIONS; IMPUTATION; MIXTURE;
D O I
10.1016/j.neunet.2010.07.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a self-organizing map model to study qualitative data (also called categorical data) It is based on a probabilistic framework which does not assume any prespecified distribution of the input data Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit This way the internal structure of the input dataset and the correlations between components are revealed without the need of a distance measure among the input values Experimental results show the capabilities of the model in visualization and unsupervised learning tasks (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1208 / 1225
页数:18
相关论文
共 50 条
  • [1] Probabilistic Self-Organizing Maps for Continuous Data
    Lopez-Rubio, Ezequiel
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (10): : 1543 - 1554
  • [2] Probabilistic PCA Self-Organizing Maps
    Lopez-Rubio, Ezequiel
    Ortiz-de-Lazcano-Lobato, Juan Miguel
    Lopez-Rodriguez, Domingo
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (09): : 1474 - 1489
  • [3] Multivariate Student-t self-organizing maps
    Lopez-Rubio, Ezequiel
    NEURAL NETWORKS, 2009, 22 (10) : 1432 - 1447
  • [4] An Alternative Approach for Binary and Categorical Self-Organizing Maps
    Santana, Alessandra
    Morais, Alessandra
    Quiles, Marcos G.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2604 - 2610
  • [5] A conditional, a fuzzy and a probabilistic interpretation of self-organizing maps
    Giordano, Laura
    Gliozzi, Valentina
    Theseider Dupre, Daniele
    JOURNAL OF LOGIC AND COMPUTATION, 2022, 32 (02) : 178 - 205
  • [6] Self-Organizing Maps for In Silico Screening and Data Visualization
    Digles, Daniela
    Ecker, Gerhard F.
    MOLECULAR INFORMATICS, 2011, 30 (10) : 838 - 846
  • [7] Qualitative analysis of goat and sheep production data using self-organizing maps
    Magdalena, R.
    Fernandez, C.
    Martin, J. D.
    Soria, E.
    Martinez, M.
    Navarro, M. J.
    Mata, C.
    EXPERT SYSTEMS, 2009, 26 (02) : 191 - 201
  • [8] FOREGROUND DETECTION IN VIDEO SEQUENCES WITH PROBABILISTIC SELF-ORGANIZING MAPS
    Lopez-Rubio, Ezequiel
    Marcos Luque-Baena, Rafael
    Dominguez, Enrique
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (03) : 225 - 246
  • [9] Application of Self-Organizing Maps to the Stock Exchange Data Analysis
    Kossakowski, Piotr
    Bilski, Piotr
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOLS 1-2, 2015, : 208 - 213
  • [10] Fast Self-Organizing Maps Training
    Giobergia, Flavio
    Baralis, Elena
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2257 - 2266