The first- and second-order isothermal phase transitions in Fe3Ga-type compounds

被引:26
作者
Balagurov, Anatoly M. [1 ,2 ]
Samoylova, Nataliya Yu [1 ,3 ]
Bobrikov, Ivan A. [1 ]
Sumnikov, Sergey, V [1 ,3 ]
Golovin, Igor S. [4 ]
机构
[1] Joint Inst Nucl Res, Frank Lab Neutron Phys, Joliot Curie 6, Dubna 141980, Russia
[2] Lomonosov Moscow State Univ, Fac Phys, Leninskie Gory 1-2, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Leninskie Gory 1-2, Moscow 119991, Russia
[4] Natl Univ Sci & Technol MISIS, Leninskiy Prospekt 2, Moscow 119049, Russia
基金
俄罗斯科学基金会;
关键词
Fe-Ga alloys; neutron diffraction; structural phase transitions; isothermal transformation kinetics; SITU NEUTRON-DIFFRACTION; FE-GA; KINETICS; MAGNETOSTRICTION; ALLOYS; ALPHA; BULK; TOOL;
D O I
10.1107/S2052520619013106
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structural features and kinetics of the transition between ordered metastable b.c.c.-derived D0(3) and equilibrium f.c.c.-derived L1(2) phases of Fe-xGa alloys (x = 27.2% and 28.0%) have been analyzed by in situ real-time neutron diffraction during isothermal annealing in the temperature range 405-470 degrees C. It has been revealed that the transition proceeds with alternation of the first- and second-order phase transformations according to a D0(3) -> A2 -> A1 -> L1(2) scheme, where A2 and A1 are disordered b.c.c. and f.c.c. structures. Deformations of the crystal lattice that arise due to these transitions are determined. The kinetics of the L12 phase nucleation and growth were analyzed in the frame of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model; however, only the early stage of the D0(3) -> L1(2) transition is well described by the JMAK equation. The value of the Avrami exponent corresponds to the constant growth rate of the new L1(2) phase and decreasing nucleation rate in the Fe-27.2Ga alloy and indicates the presence of pre-existing nucleation centres of the L1(2) phase in the Fe-28.0Ga alloy.
引用
收藏
页码:1024 / 1033
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 1975, Equilibrium and General Kinetic Theory
[2]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
Avrami M., 1940, J. Chem. Phys, V8, P212, DOI [DOI 10.1063/1.1750631, 10.1063/1.1750631]
[5]  
Bain EC, 1924, T AM I MIN MET ENG, V70, P25
[6]   Anomalous Behavior of an α → γ Phase Transition in Iron: Results of In Situ Neutron Diffraction Experiment [J].
Balagurov, A. M. ;
Bobrikov, I. A. ;
Golovin, I. S. .
JETP LETTERS, 2018, 107 (09) :558-563
[7]  
Balagurov A.M., 2005, Neutron News, V16, P8, DOI 10.1080/10446830500454346
[8]   Dispersed clusters in (Fe, Cr)3Al alloys: Neutron time-of-flight diffraction study [J].
Balagurov, Anatoly M. ;
Bobrikov, Ivan A. ;
Sumnikov, Sergey, V ;
Golovin, Igor S. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (01)
[9]   Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys [J].
Balagurov, Anatoly M. ;
Bobrikov, Ivan A. ;
Sumnikov, Sergey, V ;
Golovin, Igor S. .
ACTA MATERIALIA, 2018, 153 :45-52
[10]   Comparative study of structural phase transitions in bulk and powdered Fe-27Ga alloy by real-time neutron thermodiffractometry [J].
Balagurov, Anatoly M. ;
Golovin, Igor S. ;
Bobrikov, Ivan A. ;
Palacheva, Valeria V. ;
Sumnikov, Sergej V. ;
Zlokazov, Victor B. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 :198-210