BOUR'S THEOREM IN 4-DIMENSIONAL EUCLIDEAN SPACE

被引:10
作者
Doan The Hieu [1 ]
Nguyen Ngoc Thang [1 ]
机构
[1] Hue Univ, Coll Educ, 32 Le Loi, Hue, Vietnam
关键词
Bour's theorem; helicoidal surface; surface of revolution; Gauss map; minimal surface; MINKOWSKI; 3-SPACE; MAP;
D O I
10.4134/BKMS.b160766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize 3-dimensional Bour's Theorem to the case of 4-dimension. We proved that a helicoidal surface in R-4 is isometric to a family of surfaces of revolution in R-4 in such a way that helices on the helicoidal surface correspond to parallel circles on the surfaces of revolution. Moreover, if the surfaces are required further to have the same Gauss map, then they are hyperplanar and minimal. Parametrizations for such minimal surfaces are given explicitly.
引用
收藏
页码:2081 / 2089
页数:9
相关论文
共 11 条
[1]  
Bour E., 1862, J LECOLE POLYTECH, VXXXIX Cahier, P1
[2]  
Bozkurt Z., 2012, MATH AETERNA, V2, P701
[3]   ON THE BOUR'S THEOREM WITH RESPECT TO CONFORMAL MAP IN MINKOWSKI SPACE E-1(3) [J].
Bozkurt, Zehra ;
Gok, Ismail ;
Ekmekci, F. Nejat ;
Yayli, Yusuf .
JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2012, 10 (02) :149-172
[4]  
Guiler E., 2007, Yokohama Mathematical Journal, V54, P55
[5]  
Güler E, 2006, J MATH KYOTO U, V46, P47
[6]  
Güler E, 2010, HACET J MATH STAT, V39, P515
[7]  
Ikawa T., 2001, YOKOHAMA MATH J, V48, P173
[8]  
Ikawa T., 2001, Tokyo J. Math., V24, P377, DOI [DOI 10.3836/TJM/1255958182, 10.3836/tjm/1255958182]
[9]   Isometries between minimal helicoidal surfaces and rotation surfaces in minkowski space [J].
Ji, Fenghui ;
Kim, Young Ho .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :1-11
[10]   Mean curvatures and Gauss maps of a pair of isometric helicoidal and rotation surfaces in Minkowski 3-space [J].
Ji, Fenghui ;
Kim, Young Ho .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) :623-635